Advertisement

Factors influencing Agrobacterium-mediated transformation of monocotyledonous species

  • Ming Cheng
  • Brenda A. Lowe
  • T. Michael Spencer
  • Xudong Ye
  • Charles L. Armstrong
Invited Review

Summary

Since the success of Agrobacterium-mediated transformation of rice in the early 1990s, significant advances in Agrobacterium-mediated transformation of monocotyledonous plant species have been achieved. Transgenic plants obtained via Agrobacterium-mediated transformation have been regenerated in more than a dozen monocotyledonous species, ranging from the most important cereal crops to ornamental plant species. Efficient transformation protocols for agronomically important cereal crops such as rice, wheat, maize, barley, and sorghum have been developed and transformation for some of these species has become routine. Many factors influencing Agrobacterium-mediated transformation of monocotyledonous plants have been investigated and elucidated. These factors include plant genotype, explant type, Agrobacterium strain, and binary vector. In addition, a wide variety of inoculation and co-culture conditions have been shown to be important for the transformation of monocots. For example, antinecrotic treatments using antioxidants and bactericides, osmotic treatments, desiccation of explants before or after Agrobacterium infection, and inoculation and co-culture medium compositions have influenced the ability to recover transgenic monocols. The plant selectable markers used and the promoters driving these marker genes have also been recognized as important factors influencing stable transformation frequency. Extension of transformation protocols to elite genotypes and to more readily available explants in agronomically important crop species will be the challenge of the future. Further evaluation of genes stimulating plant cell division or T-DNA integration, and genes increasing competency of plant cells to Agrobacterium, may increase transformation efficiency in various systems. Understanding mechanisms by which treatments such as desiccation and antioxidants impact T-DNA delivery and stable transformation will facilitate development of efficient transformation systems.

Key words

Agrobacterium transformation monocotyledonous species transformation parameters 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aldemita, R. R.; Hodges, T. K. Agrobacterium tumefaciens-mediated transformation of japonica and indica rice varieties. Planta 199:612–617; 1996.CrossRefGoogle Scholar
  2. Arencibia, A. D.; Carmona, E. R. C.; Tellez, P.; Chan, M.-T.; Yu, S.-M.; Trujillo, L. E.; Oramas, P. An efficient protocol for sugarcane (Saccharum spp. L.) transformation mediated by Agrobacterium tumefaciens. Transgenic Res. 7:213–222; 1998.CrossRefGoogle Scholar
  3. Armstrong, C. L. The first decade of maize transformation: a review and future perspective. Maydica 44:101–109; 1999.Google Scholar
  4. Armstrong, C. L.; Parker, G. B.; Pershing, J. C.; Brown, S. M.; Sanders, P. R.; Duncan, D. R.; Stone, T.; Dean, D. A.; DeBoer, D. L.; Hart, J.; Howe, A. R.; Morrish, F. M.; Pajeau, W. L.; Reich, B. J.; Rodriguez, R.; Santino, C. C.; Sato, S. J.; Scluler, W.; Sims, S. R.; Stehling, S.; Tarochione, L. J.; Fromm, M. E. Field evaluation of European corn borer control in progeny of 173 transgenic corn events expressing an insecticidal protein from Bacillus thuringiensis. Crop Sci. 35:550–557; 1995.CrossRefGoogle Scholar
  5. Armstrong, C. L.; Rout, J. R. A novel Agrobacterium-mediated plant transformation method. Int. Patent Publ. WO01/09302 A2; 2001.Google Scholar
  6. Azhakanandam, K.; McCabe, M. S.; Power, B.; Lowe, K. C.; Cocking, E. C.; Davey, M. B. T-DNA transfer, integration, expression and inheritance in nice: effects of plant genotype and Agrobacterium super-virulence. J. Plant Physiol. 157:429–439; 2000.Google Scholar
  7. Bechtold, N.; Jaudeau, B.; Jolivet, S.; Maba, B.; Vezon, D.; Voisin, R.; Pelletier, G. The maternal chromosome set is the target of the T-DNA in planta transformation of Arabidopsis thaliana. Genetics 155:1875–1887; 2000.PubMedGoogle Scholar
  8. Bettany, A. J. E.; Dalton, S. J.; Timms, E.; Manderyck, B.; Dhanoa, M. S.; Morris, P. Agrobacterium tumefaciens-mediated transformation of Festuca arundinacea (Schreb.) and Lolium multifloram (Lam.). Plant Cell Rep. 21:437–444; 2003.PubMedGoogle Scholar
  9. Böttinger, P.; Steinmetz, A.; Schieder, O.; Pickardt, T. Agrobacterium-mediated transformation of Vicia faba. Mol. Breed. 8:243–254; 2001.CrossRefGoogle Scholar
  10. Bytebier, B.; Deboeck, F.; De Greve, H.; Van Montagu, M.; Hernalsteens, J.-P. T-DNA organization in tumor cultures and transgenic plants of the monocotyledon Asparagus officinalis. Proc. Natl Acad. Sci. USA 84:5345–5349; 1987.PubMedCrossRefGoogle Scholar
  11. Chan, M. T.; Chang, H.-H.; Ho, S.-L.; Tong, W.-F.; Yu, S.-M. Agrobacterium-mediated production of transgenic rice plants expressing a chimeric α-amylase promoter/β-glucuronidase gene. Plant Mol. Biol. 22:491–506; 1993.PubMedCrossRefGoogle Scholar
  12. Chan, M.-T.; Lee, T.-M.; Chang, H.-H. Transformation of indica rice (Oryza sativa L.) mediated by Agrobacterium tumefaciens. Plant Cell Physiol. 33:577–583; 1992.Google Scholar
  13. Chatcau, S.; Sangwan, R. S.; Sangwan-Norreel, B. S. Competence of Arabidopsis thaliana genotypes and mutants for Agrobacterium tumefaciens-mediated gene transfer: role of phytohormones. J. Exp. Bot. 51:1961–1968; 2000.CrossRefGoogle Scholar
  14. Cheng, M.; Fry, J. E. An improved efficient Agrobacterium-mediated plant transformation method. Int. Patent. Publ. WO 00/34491; 2000.Google Scholar
  15. Cheng, M.; Fry, J. E.; Pang, S.; Zhou, H.; Hironaka, C.; Duncan, D. R.; Conner, T. W.; Wan, Y. Genetic transformation of wheat mediated by Agrobacterium tumefaciens. Plant. Physiol. 115:971–980; 1997.PubMedGoogle Scholar
  16. Cheng, M.; Hu, T.; Layton, J.; Liu, C.-N.; Fry, J. E. Desiccation of plant tissues post-Agrobacterium infection enhances T-DNA delivery and increases stable transformation efficiency in wheat. In Vitro Cell. Dev. Biol. Plant 39(6):595–604; 2003.CrossRefGoogle Scholar
  17. Cheng, M.; Jarret, R. L.; Li, Z.; Xing, A.; Demski, J. W. Production of fertile transgenic peanut (Arachis hypogaea L.) plants using Agrobacterium tumefaciens. Plant Cell Rep. 15:653–657; 1996.CrossRefGoogle Scholar
  18. Cheng, X.; Sardana, R.; Kaplan, H.; Altosaar, I. Agrobacterium-transformed rice plants expressing synthetic cryIA(b) and cryIA(c) genes are highly toxie to striped stern borer and yellow stem borer. Proc. Natl Acad. Sci. USA 95:2767–2772; 1998.PubMedCrossRefGoogle Scholar
  19. Chu, C. C.; Wang, C. C.; Sun, C. S.; Hsu, C.; Yin, K. C.; Chu, C. Y.; Bi, F. Y. Establishment of an efficient medium for anther culture of rice through comparative experiments on the nitrogen sources. Sci. Sin. 18:659–668; 1975.Google Scholar
  20. Dale, P. J.; Marks, M. S.; Brown, M. M.; Woolston, C. J.; Gunn, H. V.; Mullineaux, P. M.; Lewis, D. M.; Kemp, J. M.; Chen, D. F.; Gilmour, D. M.; Flavell, R. B. Agroinfection of wheat: inoculation of in vitro grown seedlings and embryos. Plant. Sci. 63:237–245; 1969.CrossRefGoogle Scholar
  21. Datta, K.; Konkolíková-Nicola, Z.; Baisakh, N.; Oliva, N.; Datta, S. K. Agrobacterium-mediated engineering for sheath blight resistance of indica rice cultivars from different ecosystems. Theor. Appl. Genet. 100:832–839; 2000.CrossRefGoogle Scholar
  22. Delbreil, B.; Guerche, P.; Jullien, M. Agrobacterium-mediated transformation of Asparagus officinalis L. long-term embryogenic callus and regeneration of transgenic plants. Plant Cell Rep. 12:129–132; 1993.CrossRefGoogle Scholar
  23. Desfeux, C.; Clough, S. J.; Bent, A. F. Female reproductive tissues are the primary target of Agrobacterium-mediated transformation by the Arabidopsis floral-dip method. Plant. Physiol. 123:859–904; 2000.CrossRefGoogle Scholar
  24. Dilleu, W.; De Clerco, J.; Kapila, J.; Zambre, M.; Van Montagu, M.; Angenon, G. The effect of temperature on Agrobacterium tumefaciens-mediated gene transfer to plants. Plant J. 12:1459–1462; 1997.CrossRefGoogle Scholar
  25. Dong, J.; Kharb, P.; Teng, W.; Hall, T. C. Characterization of rice transformed via an Agrobacterium-mediated inflorescence approach. Mol. Breed. 7:187–194; 2001.CrossRefGoogle Scholar
  26. Dong, J.; Teng, W.; Buchholz, W. G.; Hall, T. C. Agrobacterium-mediated transformation of javanica rice. Mol. Breed. 2:267–276; 1996.CrossRefGoogle Scholar
  27. Eady, C. C.; Weld, R. J.; Lister, C. E. Agrobacterium tumefaciens-mediated transformation and transgenic-plant regeneration of onion (Allium cepa L.). Plant Cell Rep. 19:376–381; 2000.CrossRefGoogle Scholar
  28. Enríquez-Obregón, G. A.; Pricto-Samsónov, D. L.; de la Riva, G. A.; Pérez, M.; Selman-Housein, G.; Vázquez-Padrón, R. I. Agrobacterium-mediated Japonica rice transformation: a procedure assisted by an antinecrotic treatment. Plant Cell Tiss. Organ Cult. 59:159–168; 1999.CrossRefGoogle Scholar
  29. Enríquez-Obregón, G. A.; Vázquez-Padrón, R. I.; Pricto-Samsónov, D. L.; de la Riva, G. A.; Selman-Housein, G. Herbicide-resistant sugarcane (Saccharum officinarum L.) plants by Agrobacterium-mediated transformation. Planta 206:20–27; 1998.CrossRefGoogle Scholar
  30. Fang, Y.-D.; Akula, C.; Altpeter, F. Agrobacterium-mediated barley (Hordeum vulgare L.) transformation using green fluorescent protein as a visual marker and sequence analysis of the T-DNA: barley genomic DNA junctions. J. Plant Physiol. 159:1131–1138; 2002.CrossRefGoogle Scholar
  31. Frame, B. R.; Shou, H.; Chikwamba, R. K.; Zhang, Z.; Xiang, C.; Fonger, T. M.; Pegg, S. E. K.; Li, B.; Nettleton, D. S.; Pei, D.; Wang, K. Agrobacterium tumefaciens-mediated transformation of maize embryos using a standard binary vector system. Plant Physiol. 129:13–22; 2002.PubMedCrossRefGoogle Scholar
  32. Fry, J.; Barnason, A.; Horsch, R. B. Transformation of Brassica napus with Agrobacterium tumefaciens based vectors. Plant Cell Rep. 6:321–325; 1987.CrossRefGoogle Scholar
  33. Ganapathi, T. R.; Higgs, N. S.; Balint-Kurti, P. J.; Arntzen, C. J.; May, G. D.; Van Eck, J. M. Agrobacterium-mediated transformation of embryogenic cell suspension of the banana cultivar Rasthali (AAB). Plant Cell Rep. 20:157–162; 2001.CrossRefGoogle Scholar
  34. Gasser, C. S.; Fraley, R. T. Genetically engineering plants for crop improvement. Science 244:1293–1299; 1989.CrossRefPubMedGoogle Scholar
  35. Gordon-Kamm, W.; Dilkes, B. P.; Lowe, K.; Hoerster, G.; Sun, X.; Ross, M.; Church, L.; Bunde, C.; Farrell, J.; Maddock, S.; Snyder, J.; Sykes, L.; Li, Z.; Woo, Y.-M.; Bidney, D.; Larkins, B. A. Stimulation of the cell cycle and maize transformation by disruption of the plant retinoblastoma pathway. Proc. Natl Acad. Sci. USA 99:11975–11980; 2002.PubMedCrossRefGoogle Scholar
  36. Gould, J.; Devery, M.; Hasegawa, O.; Ulian, E. C.; Peterson, G.; Smith, R. H. Transformation of Zea mays L. using Agrobacterium tumefaciens and the shoot apex. Plant Physiol. 95:426–434; 1991.PubMedCrossRefGoogle Scholar
  37. Graves, A. C. F.; Goldman, S. L. Agrobacterium tumefaciens-mediated transformation of the monocot genus Gladiolus: detection of expression of T-DNA-encoded genes. J. Bacteriol. 169:1745–1746; 1987.PubMedGoogle Scholar
  38. Grimsley, N. H.; Ramos, C.; Hein, T.; Hohn, B. Meristematic tissues of maize plants are most susceptible to Agroinfection with maize streak virus. Bio/Technology 6:185–189; 1988.CrossRefGoogle Scholar
  39. Guo, G.-Q.; Maiwald, F.; Lorenzen, P.; Steinbiss, H.-H. Factors influencing T-DNA transfer into wheat and barley cells by Agrobacterium tumefaciens. Cercal Res. Commun. 26:15–22; 1998.Google Scholar
  40. Hansen, G.; Das, A.; Chilton, M.-D. Constitutive expression of the virulence genes improves the efficiency of plant transformation by Agrobacterium. Proc. Natl Acad. Sci. USA 91:7603–7607; 1994.PubMedCrossRefGoogle Scholar
  41. Hashizume, F.; Tsuchiya, T.; Ugaki, M.; Viwa, Y.; Tachibana, N.; Kowyama, Y. Efficient Agrobacterium-mediated transformation and the usefulness of a sythetic GFP reporter gene in leading varieties of japonica rice. Plant Biotechnol. 16:397–401; 1999.Google Scholar
  42. Hernalsteers, J.-P.; Thia-Toong, L.; Schell, J.; Van Montagu, M. An Agrobacterium-transformed cell culture from monocot Asparagus officinalis. EMBO J. 3:3039–3041; 1984.Google Scholar
  43. Hiei, Y.; Komari, T.; Kubo, T. Transformation of rice mediated by Agrobacterium tumefaciens. Plant Mol. Biol. 35:205–218; 1997.PubMedCrossRefGoogle Scholar
  44. Hiei, Y.; Ohta, S.; Komari, T.; Kumashiro, T. Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant. J. 6:271–282; 1994.PubMedCrossRefGoogle Scholar
  45. Hooykaas-Van Slogteren, G. M. S.; Hooykaas, P. J. J.; Schilperoot, R. A. Expression of Ti plasmid genes in monocotyledonous plants infected with Agrobacterium tumefaciens. Nature 311:763–764; 1984.CrossRefGoogle Scholar
  46. Howe, A. R.; Gasser, C. S.; Brown, S. M.; Padgette, S. R.; Hart, J.; Parker, G. B.; Fromm, M. E.; Armstrong, C. L. Glyphosate as a selective agent for the production of fertile transgenic maize (Zea mays L.) plants. Mol. Breed. 10:153–164; 2002.CrossRefGoogle Scholar
  47. Hu, T.; Metz, S.; Chay, C.; Zhou, H.-P.; Biest, N.; Chen, G.; Cheng, M.; Feng, X.; Radionenko, M.; Lu, F.; Fry, J. E. Agrobacterium-mediated largescale transformation of wheat (Triticum aestivum L.). Plant Cell. Rep. 21:1010–1019; 2003.PubMedCrossRefGoogle Scholar
  48. Ishida, Y.; Saito, H.; Ohta, S.; Hiei, Y.; Komari, T.; Kumashiro, T. High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Nature Biotechnol. 14:745–750; 1996.CrossRefGoogle Scholar
  49. Joersbo, M.; Donaldson, I.; Kreiber, J.; Peterson, S. G.; Brunstedt, J.; Okkels, F. T. Analysis of mannose selection used for transformation of sugar beet. Mol. Breed. 4:111–117; 1998.CrossRefGoogle Scholar
  50. Ke, J.; Khan, R.; Johnson, T.; Somers, D. A.; Das, A. High-efficiency gene transfer to recalcitrant plants by Agrobacterium tumefaciens. Plant Cell Rep. 20:150–156; 2001.CrossRefGoogle Scholar
  51. Ke, X.-Y.; McCornac, A. C.; Harvey, A.; Lonsdale, D.; Chen, D.-F.; Elliott, M. C. Manipulation of discriminatory T-DNA delivery by Agrobacterium into cells of immature embryos of barley and wheat. Euphytica 126:333–343; 2002.CrossRefGoogle Scholar
  52. Khanna, H. K.; Daggard, G. E. Agrobacterium tumefaciens-mediated transformation of wheat using a superbinary vector and a polyamine-supplemented regeneration medium. Plant Cell Rep. 21:429–436; 2003.PubMedGoogle Scholar
  53. Khanna, H. K.; Raina, S. K. Agrobacterium-mediated transformation of indica rice cultivars using binary and superbinary vectors. Aust. J. Plant Physiol. 26:311–324; 1999.CrossRefGoogle Scholar
  54. Khanna, H. K.; Raina, S. K. Elite indica transgenic rice plants expressing modified Cry IAC endotoxin of Bacillus thuringiensis show enhanced resistence to yellow stem borer (Scirpophaga incertulas). Transgenic Res. 11:411–423; 2002.PubMedCrossRefGoogle Scholar
  55. Kisaka, H.; Kameya, T. Fertile transgenic Asparagus plants produced by Agrobacterium-mediated transformation. Plant Biotechnol. 15:177–181; 1998.Google Scholar
  56. Kondo, T.; Hasegawa, H.; Suzuki, M. Transformation and regeneration of garlic (Allium sativum L.) by Agrobacterium-mediated gene transfer. Plant Cell Rep. 19:989–993; 2000.CrossRefGoogle Scholar
  57. Ku, M. S. B.; Agarie, S.; Normura, M.; Fukayama, H.; Tsuchida, H.; Ono, K.; Hirose, S.; Toki, S.; Miyao, M.; Matsuoka, M. High-level expression of maize phosphoenolpyruvate carboxylase in transgenic rice plants. Nature Biotechnol. 17:76–81; 1999.CrossRefGoogle Scholar
  58. Limanton-Grevet, A.; Jullien, M. Agrobacterium-mediated transformation of Asparagus officinalis L.: molecular and genetic analysis of transgenic plants. Mol. Breed. 7:141–150; 2001.CrossRefGoogle Scholar
  59. Linsmaier, E. M.; Skoog, F. Organic growth factor requirements of tobacco tissue cultures. Physiol. Plant. 18:100–127; 1965.CrossRefGoogle Scholar
  60. Lucca, P.; Ye, X.; Potrykus, I. Effective selection and regeneration of transgenic rice plants with mannose as selective agent. Mol. Breed. 7:43–49; 2001.CrossRefGoogle Scholar
  61. Marks, M. S.; Kemp, J. M.; Woolston, C. J.; Dale, P. J. Agroinfection of wheat: a comparison of Agrobacterium strains. Plant Sci. 63:217–256; 1989.CrossRefGoogle Scholar
  62. Matthews, P.; Wang, M.-B.; Waterhouse, P. M.; Thornton, S.; Fieg, S. J.; Gubler, F.; Jacobsen, J. V. Marker gene elimination from transgenic barley, using co-transformation with adjacent ‘twin T-DNAs’ on a standard Agrobacterium transformation vector. Mol. Breed. 7:195–202; 2001.CrossRefGoogle Scholar
  63. May, G. D.; Afza, R.; Mason, H. S.; Wiecko, A.; Novak, F. J.; Arntzen, C. J. Generation of transgenic banana (Musa acuminata) plants via Agrobacterium-mediated transformation. Bio/Technology 13:486–492; 1995.CrossRefGoogle Scholar
  64. Messens, E.; Dekeyser, R.; Stachel, S. E. A nontransformable Triticum monoccum monocotyledonous culture produces the potent Agrobacterium vir-inducing compound ethyl ferulate. Proc. Natl Acad. Sci. USA 87:4368–4372; 1990.PubMedCrossRefGoogle Scholar
  65. Mohanty, A.; Sarma, N. P.; Tyagi, A. K. Agrobacterium-meditated high frequency transformation of an elite indica rice variety Pusa Basmati I and transmission of the transgenes to R2 progeny. Plant Sci. 147:127–137; 1999.CrossRefGoogle Scholar
  66. Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15:473–497; 1962.CrossRefGoogle Scholar
  67. Mysore, K. S.; Nam, J.; Gelvin, S. B. An Arabidopsis histone H2A mutant is deficient in Agrobacterium T-DNA integration. Proc. Natl Acad. Sci. USA 97:948–953; 2000.PubMedCrossRefGoogle Scholar
  68. Negrotto, D.; Jolley, M.; Beer, S.; Wenck, A. R.; Hansen, G. The use of phosphomannose-isomerase as a selectable marker to recover transgenic maize plants (Zea mays L.) via Agrobacterium transformation. Plant Cell Rep. 19:798–803; 2000.CrossRefGoogle Scholar
  69. Olhoft, P. M.; Flagel, L. E.; Donovan, C. M.; Somers, D. A. Efficient soybean transformation using hygromycin B selection in the cotyledonarynode method. Planta 216:723–735; 2003.PubMedGoogle Scholar
  70. Olhoft, P. M.; Somers, D. A. l-Cysteine increases Agrobacterium-mediated T-DNA delivery into soybean cotyledonary-node cells. Plant Cell Rep. 20:706–711; 2001.CrossRefGoogle Scholar
  71. Park, S. H.; Pinson, S. R.; Smith, R. R. T-DNA integration into genomic DNA of rice following Agrobacterium inoculation of isolated shoot apices. Plant. Mol. Biol. 32:1135–1148; 1996.PubMedCrossRefGoogle Scholar
  72. Popelka, J. C.; Altpeter, F. Agrobacterum tumefaciens-mediated genetic transformation of rye (Secale cereale L.). Mol. Breed. 11:203–211; 2003.CrossRefGoogle Scholar
  73. Raineri, D. M.; Bottino, P.; Gordon, M. P.; Nester, E. W. Agrobacterium-mediated transformation of rice (Oryza sativa L). Bio/Technology 8:33–38; 1990.CrossRefGoogle Scholar
  74. Rashid, H.; Yokoi, S.; Toriyama, K.; Hinata, K. Transgenic plant production mediated by Agrobacterium in indica rice. Plant Cell Rep. 15:727–730; 1996.CrossRefGoogle Scholar
  75. Roberts, R. L.; Metz, M.; Monks, D. E.; Mullaney, M. L.; Hall, T.; Nester, E. W. Purine synthesis and increased Agrobacterium tumefaciens transformation of yeast and plants. Proc. Natl Acad. Sci. USA 100:6634–6639; 2003.PubMedCrossRefGoogle Scholar
  76. Rout, J. R.; Hironaka, C. M.; Conner, T. W.; DeBoer, D. L.; Duncan, D. R.; Fromm, M. E.; Armstrong, C. L. Agrobacterium-mediated stable genetic transformation of suspension cells of corn (Zea mays L.). 38th Annual Maize Geneties Conf., St. Charles, IL, March 14–17, 1996 (Abstract).Google Scholar
  77. Russell, D. A.; Fromm, M. E. Tissue-specific expression in transgenic maize of four endosperm promoters from maize and rice. Transgenic Res. 6:157–168; 1997.PubMedCrossRefGoogle Scholar
  78. Sakamoto, A.; Murato, A.; Murato, N. Metabolic engineering of rice leading to biosynthesis of glycinebetaine and tolerance to salt and cold. Plant Mol. Biol. 38:1011–1019; 1998.PubMedCrossRefGoogle Scholar
  79. Salas, M. G.; Park, S. H.; Srivatanakul, M.; Smith, R. H. Temperature influence on stable T-DNA integration in plant cells. Plant Cell Rep. 20:701–705; 2001.CrossRefGoogle Scholar
  80. Sawahel, W. A.; Hassan, A. H. Generation of transgenic wheat plants producing high levels of osmoprotectant proline. Biotech. Lett. 24:7121–7125; 2002.Google Scholar
  81. Schäfer, W.; Görz, A.; Kahl, G. T-DNA integration and expression in a monocot crop plant after induction of Agrobacterium. Nature 327:529–532; 1987.CrossRefGoogle Scholar
  82. Schläppi, M.; Hohn, B. Competence of immature maize embryos for Agrobacterium-mediated gene transfer. Plant Cell 4:7–16; 1992.PubMedCrossRefGoogle Scholar
  83. Shen, W.-H.; Escudero, J.; Schläppi, M.; Ramos, C.; Hohn, B.; Koukolikova-Nicola, Z. T-DNA transfer to maize cells: histochemical investigation of β-glucuronidase activity in maize tissues. Proc. Natl Acad. Sci. USA 90:1488–1492; 1993.PubMedCrossRefGoogle Scholar
  84. Simpson, G. G.; Filipowicz, W. Splicing of pre-cursors to mRNA in higher plants: mechanism, reguration and sub-nuclear organization of the spliccosomal machinery. Plant Mol. Biol. 32:1–41; 1996.PubMedCrossRefGoogle Scholar
  85. Somleva, M. N.; Tomaszewski, Z.; Conger, B. V. Agrobacterium-mediated genetic transformation of switehgrass. Crop Sci. 42:2080–2087; 2002.CrossRefGoogle Scholar
  86. Sunikumar, G.; Rathore, K. S. Transgenic cotton: factors influencing Agrobacterium-mediated transformation and regeneration. Mol. Breed. 8:37–52; 2001.CrossRefGoogle Scholar
  87. Suzuki, S.; Nakano, M. Agrobacterium-mediated production of transgenic plants of Muscari armeniacum Leichtl. Ex Bak. Plant Cell Rep. 20:835–841; 2002.CrossRefGoogle Scholar
  88. Suzuki, S.; Supaibulwatana, K.; Mii, M.; Nakano, M. Production of transgenic plants of Liliaceous ornamental plants Agapanthus praexcox ssp. orientalis (Leighton) Leighton via Agrobacterium-mediated transformation of embryogenic calli. Plant Sci. 161:89–97; 2001.CrossRefGoogle Scholar
  89. Tingay, S.; McElroy, D.; Kalla, R.; Fieg, S.; Wang, M.; Thornton, S.; Brettell, R. Agrobacterium-mediated barley transformation. Plant J. 11:1369–1376; 1997.CrossRefGoogle Scholar
  90. Toki, S. Rapid and efficient Agrobacterium-mediated transformation in rice. Plant Mol. Biol. Rep. 15:16–21; 1997.Google Scholar
  91. Trifonova, A.; Madsen, S.; Olesen, A. Agrobacterium-mediated transgene delivery and integration into barley under a range of in vitro culture conditions. Plant Sci. 161:871–880; 2001.CrossRefGoogle Scholar
  92. Tzfira, T.; Vaidya, M.; Citovsky, V. Increasing plant susceptibility to Agrobacterium infection by overexpression of the Arabidopsis nuclear protein VIP 1. Proc. Natl Acad. Sci. USA 99:10435–10440; 2002.PubMedCrossRefGoogle Scholar
  93. Upadhyaya, N. M.; Surin, B.; Ramm, K.; Gaudron, J.; Schünmann, P. H. D.; Taylor, W.; Waterhouse, P. M.; Wang, M.-B. Agrobacterium-mediated transformation of Australian rice cultivars Jarrah and Amaroo using modified promoters and selectable markers. Aust. J. Plant Physiol. 27:201–210; 2000.Google Scholar
  94. Urushibara, S.; Tozawa, Y.; Kawagishi-Kobayashi, M.; Wakasa, K. Efficient transformation of suspension-cultured rice cells mediated by Agrobacterium tumefaciens. Breed. Sci. 51:33–38; 2001.CrossRefGoogle Scholar
  95. Uzé, M.; Potrykus, I.; Sautter, C. Factors influencing T-DNA transfer from Agrobacterium to precultured immature wheat embryos (Triticum aestivum L.). Cereal Res. Commun. 28:17–23; 2000.Google Scholar
  96. Uzé, M.; Wünn, J.; Puonti-Kaerlas, J.; Potrykus, I.; Sautter, C. Plasmolysis of precultured immature embryos improves Agrobacterium mediated gene transfer to rice (Oryza sativa L.). Plant Sci. 130:87–95; 1997.CrossRefGoogle Scholar
  97. van der Fits, L.; Deakin, E. A.; Hoge, J. H. C.; Memelink, J. The ternary transformation system: constitutive virG on a compatible plasmid dramatically increases Agrobacterium-mediated plant transformation. Plant. Mol. Biol. 43:495–502; 2000.PubMedCrossRefGoogle Scholar
  98. Wang, M.-B.; Abhott, D. C.; Upadhyaya, N. M.; Jacobsen, J. V.; Waterhouse, P. M. Agrobacterium tumefaciens-mediated transformation of an elite Australian barley cultivar with virus resistance and reporter genes. Aust. J. Plant Physiol. 28:149–156; 2001.Google Scholar
  99. Wang, M.-B.; Upadhyaya, N. M.; Brettell, R. I. S.; Waterhouse, P. M. Intron-mediated improvement of a selectable marker gene for plant transformation using Agrobacterium tumefaciens. J. Genet. Breed 51:325–334; 1997.Google Scholar
  100. Weir, B.; Gu, X.; Wang, M.-B.; Upadhyaya, N.; Elliott, A. R.; Brettell, R. I. Agrobacterium tumefaciens-mediated transformation of wheat using suspension cells as a model system and green fluorescent protein as a visual marker. Aust. J. Plant Physiol. 28:807–818; 2001.Google Scholar
  101. Wenek, A. R.; Quinn, M.; Whetten, R. W.; Pullman, G.; Sederoff, R. High efficiency Agrobacterium-mediated transformation of Norway spruce (Picea abies) and loblolly pine (Pinus taeda). Plant Mol. Biol. 39:407–416; 1999.CrossRefGoogle Scholar
  102. Wu, H.; McCormac, A. C.; Elliott, M. C.; Chen, D.-F. Agrobacterium-mediated stable transformation of cell suspension cultures of barley (Hordeum vulgare). Plant Cell Tiss. Organ Cult. 54:161–171; 1998.CrossRefGoogle Scholar
  103. Wu, H.; Sparks, C.; Amoah, B.; Jones, H. D. Factors influencing successful Agrobacterium-mediated genetic transformation of wheat. Plant Cell Rep. 21:659–668; 2003.PubMedGoogle Scholar
  104. Ye, G.-N.; Stone, D.; Pang, S. Z.; Creely, W.; Gonzalez, K.; Hinchee, M. Arabidopsis ovule is the target for Agrobacterium in planta vacuum infiltration transformation. Plant J. 19:249–257; 1999.PubMedCrossRefGoogle Scholar
  105. Ye, X.; Al-Babili, S.; Kloti, A.; Zhang, J.; Lucca, P.; Beyer, P.; Potrykus, I. Erigineering the provitamin A (β-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 287:303–305; 2000.PubMedCrossRefGoogle Scholar
  106. Yokoi, S.; Higashi, S.-I.; Kishitani, S.; Murata, N.; Toriyama, K. Introduction of the cDNA for Arabidopsis glycerol-3-phosphate acyltransferase (GPAT) confers unsaturation of fatty acids and chilling tolerance of photosynthesis on rice. Mol. Breed. 4:269–275; 1998.CrossRefGoogle Scholar
  107. Yu, T. T.; Skinner, D. Z.; Liang, G. H.; Trick, H. N.; Huang, B.; Muthukrishnan, S. Agrobacterium-mediated transformation of creeping bentgrass using GFP as a reporter gene. Hereditas 133:229–233; 2000.PubMedCrossRefGoogle Scholar
  108. Zhang, J.; Xu, R.-J.; Elliott, M. C.; Chen, D.-F. Agrobacterium-mediated transformation of elite indica and japonica rice cultivars. Mol. Biotechnol. 8:223–231; 1997.PubMedGoogle Scholar
  109. Zhang, W.; Subbarao, S.; Addae, P.; Shen, A.; Armstrong, C.; Peschke, V.; Gilbertson, L. Crellox mediated marker gene excision in transgenic maize (Zea mays L.) plants. Theor. Appl. Genet. 107:1157–1168; 2003.PubMedCrossRefGoogle Scholar
  110. Zhao, Z.-Y.; Cai, T.; Tagliani, L.; Miller, M.; Wang, N.; Pang, H.; Rudert, M.; Schroeder, S.; Hondred, D.; Seltzer, J.; Pierce, D. Agrobacterium-mediated sorghum transformation. Plant Mol. Biol. 44:789–798; 2000.PubMedCrossRefGoogle Scholar
  111. Zhao, Z.-Y.; Gu, W.; Cai, T.; Tagliani, L.; Hondred, D.; Bond, D.; Schroeder, S.; Rudert, M.; Pierce, D. High throughput genetic transformation mediated by Agrobacterium tumefaciens in maize. Mol. Breed. 8:323–333; 2001.CrossRefGoogle Scholar
  112. Zheng, S.-J.; Khrustaleva, L.; Henken, B.; Jacobsen, E.; Kik, C.; Krens, F. A. Agrobacterium tumefaciens-mediated transformation of Allium cepa L.: the production of transgenic onions and shallots. Mol. Breed. 7:101–115; 2001.CrossRefGoogle Scholar
  113. Zhou, H.; Arrowsmith, J. W.; Fromm, M. E.; Hironaka, C. M.; Taylor, M. L.; Rodriguez, D.; Pajeau, M. E.; Brown, S. M.; Santino, C. G.; Fry, J. E. Glyphosate-tolerant CP4 and GOX genes as a selectable marker in wheat transformation. Plant Cell Rep. 15:159–163; 1995.Google Scholar

Copyright information

© Society for In Vitro Biology 2004

Authors and Affiliations

  • Ming Cheng
    • 1
  • Brenda A. Lowe
    • 1
  • T. Michael Spencer
    • 1
  • Xudong Ye
    • 2
  • Charles L. Armstrong
    • 3
  1. 1.Monsanto, Mystic ResearchMystic
  2. 2.MonsantoMiddleton
  3. 3.MonsantoSt. Louis

Personalised recommendations