The effects of reduced and oxidized glutathione on white spruce somatic embryogenesis

Article

Summary

The glutathione-glutathione disulfide redox pair was utilized to improve white spurce somatic embryo development. Mature cotyledonary-stage somatic embryos were divided into two groups (A and B) based on morphological normality and the ability of the mature somatic embryos to convert into plantlets. Group A embryos had four or more cotyledons and converted readily upon germination after a partial drying treatment. Group B embryos had three or fewer cotyledons with a low conversion frequency. The addition of reduced glutathione (GSH) at a concentration of 0.1 mM resulted in an increase in embryo production (total population) with a mean total number of 64 embryos per 100 mg embryogenic tissue as well as an increase in post-embryonic root growth. However, at a higher concentration (1 mM), GSH inhibited embryo formation. The manipulation of the tissue culture environment via the inclusion of glutathione disulfide (GSSG), at concentrations of 0.1 and 1.0 mM, enhanced the development of better-quality embryos. This quality was best exemplified when embryos forming four or more cotyledons increased by at least twofold to 73.9% when treated with 1.0 mM GSSG, compared to 38% in control. Furthermore, this improved quality was reflected by an increased conversion frequency. A 20% increase in the ability of the somatic embryo to produce both root and shoot structures during post-embryonic development was noted when embryos were matured on maturation medium supplemented with 1.0 mM GSSG over the control.

Key words

white spruce somatic embryogenesis reduced glutathione glutathione disulfide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Attree, S. M.; Fowke, L. C. Embryogeny of gymnosperms: advances in synthetic seed technology of conifers. Plant Cell Tiss. Organ Cult. 35:1–35; 1993.CrossRefGoogle Scholar
  2. Belmonte, M.; Stasolla, C.; Loukanina, N.; Yeung, E. C.; Thorpe, T. A. Glutathione modulation of purine metabolism in cultured white spruce embryogenic tissue. Plant Science (in press); 2003.Google Scholar
  3. Buchheim, J. A.; Colburn, S. M.; Ranch, J. P. Maturation of soybean somatic embryos and the transition to plantlet growth. Plant Physiol. 89:768–775; 1989.PubMedGoogle Scholar
  4. Cheng, J.-C.; Seeley, K. A.; Sung, Z. R. RML1 and RML2, Arabidopsis genes required for cell proliferation at the root tip. Plant Physiol. 107:365–376; 1995.PubMedCrossRefGoogle Scholar
  5. de Pinto, M. C.; Francis, D.; De Gara, L. The redox state of the ascorbatedehydroascorbate pair as a specific sensor of cell division in tobacco BY-2 cells. Protoplasma 209:90–97; 1999.CrossRefPubMedGoogle Scholar
  6. Earnshaw, B. A.; Johnson, M. A. The effect of glutathione on development in wild carrot suspension cultures. Biochem. Biophys. Res. Commun. 133:988–993; 1985.PubMedCrossRefGoogle Scholar
  7. Earnshaw, B. A.; Johnson, M. A. Control of wild carrot somatic embryo development by antioxidants. Plant Physiol. 85:273–276; 1987.PubMedGoogle Scholar
  8. Fahey, R. C.; Di Stefano, D. L.; Meier, G. P.; Bryan, R. N. Role of hydration state and thiol-disulfide status in the control of thermal stability and protein synthesis in wheat embryo. Plant Physiol. 65:1062–1066; 1980.PubMedGoogle Scholar
  9. Grossnickle, S. C. Ecophysiology of northern spurce species: the performance of planted seedlings. Ottawa: NRC Research Press; 2000.Google Scholar
  10. Hakman, I.; Fowke, L. C. Somatic embryogenesis in Picca glauca (white spruce) and Picea mariana (black spruce). Can. J. Bot. 65:656–659; 1987.Google Scholar
  11. Henmi, K.; Tsuboi, S.; Demura, T.; Fukuda, H.; Iwabuchi, M.; Ogawa, K. A possible role of glutathione and glutathione disulfide in tracheary element differentiation in the cultured mesophyll cells of Zinnia elegans. Plant Cell Physiol. 42:673–676; 2001.PubMedCrossRefGoogle Scholar
  12. Jain, S. M.; Newton, R. J.; Sopltes, E. J. Enhancement of somatic embryogenesis in Norway spruce (Picea abies L.). Theor. Appl. Genet. 76:501–506; 1988.CrossRefGoogle Scholar
  13. Kong, L.; Attree, S. M.; Evans, D. E.; Binarova, P.; Yeung, E. C.; Fowke, L. C. Somatic embryogenesis in white spruce: studies of embryo development and cell biology. In: Jain, S. M.; Gupta, P. K.; Newton, B. J., eds. Somatic embryogenesis in woody plants vol. 4. Dordrecht: Kluwer Academic Publishers; 1999:1–28.Google Scholar
  14. Kong, L.; Attree, S. M.; Fowke, L. C. Changes of endogenous hormone level in developing seeds, zygotic embryos, and megagametophytes in Picea glauca (Moench) Voss. Physiol. Plant. 101:23–30; 1997.CrossRefGoogle Scholar
  15. Kong, L.; Yeung, E. C. Development of white spruce somatic embryos: II. Continual shoot meristem development during germination. In Vitro Cell. Dev. Biol. Plant 28:125–131; 1992.Google Scholar
  16. Kranner, L.; Grill, D. Content of low-molecular-weight thiols during the imbibition of pea seeds. Physiol. Plant. 88:557–562; 1993.CrossRefGoogle Scholar
  17. Litvay, J. D.; Verma, D. C.; Johnson, M. A. Influence of a loblolly pine (Pinus taeda L.) culture medium and its components on growth and somatic embryogenesis of the wild carrot (Daucus carota L.). Plant Cell Rep. 4:325–328; 1985.CrossRefGoogle Scholar
  18. Lu, C.-Y.; Thorpe, T. A. Somatic embryogenesis and plantlet regeneration in cultured immature embryos of Picea glauca. J. Plant Physiol. 128:297–302; 1987.Google Scholar
  19. Marre, E.; Arrigoni, O. Metabolic reactions to auxin: the effects of auxin on glutathione and the effects of glutathione on growth of isolated plant parts. Physiol. Plant. 10:289–301; 1957.CrossRefGoogle Scholar
  20. May, M. J.; Vernoux, T.; Leaver, C.; Van Montagu, M.; Inze, D. Glutathione homeostasis in plants: implication for environmental sensing and plant development. J. Exp. Bot. 49:649–667; 1998.CrossRefGoogle Scholar
  21. Nocter, G.; Foyer, C. H. Ascorbate and glutathione: keeping active oxygen under control. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49:249–279; 1998.CrossRefGoogle Scholar
  22. Ogawa, K.; Tasaka, Y.; Mino, M.; Tanaka, T.; Iwabuchi, M. Association of glutathione with flowering in Arabidopsis thaliana. Plant Cell Physiol. 42:524–530; 2001.PubMedCrossRefGoogle Scholar
  23. Potters, G.; De Gara, L.; Asard, H.; Horemans, N. Ascorbate and glutathione: guardians of the cell cycle, partners in crime? Plant Physiol. Biochem. 40:537–548; 2002.CrossRefGoogle Scholar
  24. Roberts, D. R.; Sutton, B. C. S.; Flinn, B. S. Synchronous and high frequency germination of interior spruce somatic embryos following partial drying at high relative humidity. Can. J. Bot. 68:1086–1090; 1990.Google Scholar
  25. Sanchez-Fernandez, R.; Fricker, M.; Corben, L. B.; White, N. S.; Sheard, N.; Leaver, C. J.; Van Montagu, M.; Inze, D.; May, M. J. Cell proliferation and hair tip growth in the Arabidopsis root are under mechanistically different forms of redox control. Proc. Natl Acad. Sci. USA 94:2745–2750; 1997.PubMedCrossRefGoogle Scholar
  26. Stasolla, C.; Yeung, E. C. Ascorbic acid improves conversion of white spruce somatic embryos. In Vitro Cell. Dev. Biol. Plant 35:316–319; 1999.Google Scholar
  27. Suhasini, K.; Sagare, A. P.; Krishnamurthy, K. V. Study of aberrant morphology and lack of conversion of somatic embryos of chickpea (Cicer arietinum L.). In Vitro Cell. Dev. Biol. Plant 32:6–10; 1996.CrossRefGoogle Scholar
  28. Tommasi, F.; Paciolla, C.; de Pinto, M. C.; De Gara, L. A comparative study of glutathione and ascorbate metabolism during germination of Pinus pinca L. seeds. J. Exp. Bot. 362:1647–1654; 2001.CrossRefGoogle Scholar
  29. Vernoux, T.; Wilson, R. C.; Seeley, K. A.; Reichheld, P.-P.; Muroy, S.; Brown, S.; Maughan, S. C.; Cebbott, C. S.; Van Montagu, M.; Inze, D.; May, M. J.; Sung, Z. R. The ROOT MERISTEMLESS/CADMIUM SENSITIVE2 gene defines a glutathione-dependent pathway involved in initiation and maintenance of cell division during postembryonic root development. Plant Cell 12:97–109; 2000.PubMedCrossRefGoogle Scholar
  30. von Aderkas, P. In vitro phenotypic variation in larch cotyledon number. Int. J. Plant Sci. 123:301–307; 2002.CrossRefGoogle Scholar
  31. Yeung, E. C. Structural and developmental patterns in somatic embryogenesis. In: Thorpe, T. A., ed. In vitro embryogenesis in plants. Dordrecht: Kluwer Academic Publishers; 1995:205–247.Google Scholar
  32. Yeung, E. C.; Stasolla, C. Somatic embryogenesis—apical meristems and embryo conversion. Korean. J. Plant Tiss. Cult. 27:299–307; 2000.Google Scholar
  33. Zellnig, G.; Tausz, M.; Pesec, B.; Muller, M. Effects of glutathione on thiol redox systems, chromosomal aberrations, and the ultrastructure of meristematic root cells of Picea abies (L.) Karst. Protoplasma 212:227–235; 2000.CrossRefGoogle Scholar

Copyright information

© Society for In Vitro Biology 2004

Authors and Affiliations

  1. 1.Department of Biological SciencesUniversity of CalgaryCalgaryCanada

Personalised recommendations