In Vitro Cellular & Developmental Biology - Plant

, Volume 39, Issue 6, pp 551–556 | Cite as

Analyzing somaclonal variation in micropropagated bananas (Musa spp.)

  • Leela SahijramEmail author
  • Jaya R. Soneji
  • K. T. Bollamma
Invited Review


In a micropropagation program, where it is of paramount importance to produce true-to-type planting material, somaclonal variation of any kind is undesirable. Variation among plants regenerated from tissue culture is termed ‘somaclonal variation’. In banana, somaclonal variants of different type have been reported with regard to plant morphology. This article discusses various factors due to which somaclonal variations may arise. Somaclonal variation may be detected by visual screening or by using molecular markers such as randomly amplified polymorphic DNA (RAPD), amplified fragment length polymorphism (AFLP), and by cytological studies. Although somaclonal variation is undesirable in the context of micropropagation, it can be used to advantage for genetic improvement of banana, as has been described.

Key words

genotype fidelity hormonal factors Musa spp. bananas plantains subcultures 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bhojwani, S. S.; Razdan, M. K. Cytogenetic studies. In: Bhojwani, S. S.; Razdan, M. K., eds. Plant tissue culture: theory and practice. Developments in crop science, vol. 5. Amsterdam: Elsevier Science Publishers B.V.; 1983:159–180.Google Scholar
  2. Chadha, K. L.; Sahijram, L. Application of biotechnology to Musa. In: Chadha, K. L.; Ravindran, P. N.; Sahijram, L. eds. Biotechnology in horticultural and plantain crops. New Delhi: Malhotra Publishing House; 2000:232–247.Google Scholar
  3. Cote, F. X.; Sandovel, J. A.; Marie, P. H.; Auboiron, E. Variation in micropropagated bananas and plantains: literature survey. Fruits 48:15–22; 1993.Google Scholar
  4. Damasco, O. P. Molecular methods for early identification of banana (Musa spp., AAA) dwarf somaclonal variants. Philippine Tech. J. 22:29–39; 1997.Google Scholar
  5. Damasco, O. P.; Smith, M. K.; Godwin, I. D.; Adkins, S. W.; Smillic, R. M.; Hatherington, S. E. Micropropagated dwarf off-type ‘Cavendish’ bananas (Musa spp., AAA) show improved tolerance to subtropical temperatures. Australian J. Agri. Res. 48:377–384; 1997.CrossRefGoogle Scholar
  6. Duncan, R. R. Tissue culture-induced variation and crop improvement. Adv. Agron. 58:201–240; 1997.CrossRefGoogle Scholar
  7. El-tarras, A. E.; Taha, F. A.; Abd-el-Wahab, S. Somaclonal variation in micropropagated banana at biochemical and chromosomal levels. Bull. Fac. Agriculture, Univ. of Cairo 46:429–440; 1995.Google Scholar
  8. Engelborghs, I.; Swennen, B.; Campenhout, S. V. The potential of AFLP to detect genetic differences and somaclonal variants in Musa spp. Infomusa 7(2):3–6; 1998.Google Scholar
  9. Evans, D. A.; Sharp, W. R.; Medina-Filho, H. P., Somaclonal and gametoclonal variation. Am. J. Bot. 71:759–774; 1984.CrossRefGoogle Scholar
  10. Grillo, G. S.; Martin, M. J. G.; Dominguez, A. M. Morphological methods for the detection of banana off-types during the hardening phase. Int. Soc. Hort. Sci. 490:239–245; 1998.Google Scholar
  11. Hammerschlag, F. A. Somaclonal variation. In: Hammerschlag, F. A.; Litz, R. E., eds. Biotechnology of perennial fruits. Wallingford: CAB International; 1992:35–55.Google Scholar
  12. Herman, E. B. Recent advances in plant tissue culture. Regeneration, micropropagation and media 1988–1991. Ethylene, DNA methylation and regeneration. New York: Agritech Consultants, Shrub Oak; 1991:6–10.Google Scholar
  13. Hwang, S. Variation in banana plants propagated through tissue culture. J. Chinese Soc. Hort. Sci. 32:1986 (in Chinese with English summary).Google Scholar
  14. Hwang, S. Somaclonal variational approach to breeding Cavendish banana for resistance to Fusarium wilt race 4. Global Conf. on Banana and Plantain, October 28–31, Bangalore, India. Abstracts: 2002:57Google Scholar
  15. Hwang, S.; Tang, C. Y. Somaclonal variation and its use for improving Cavendish (AAA dessert) bananas in Taiwan. In: Frison, E. A.; Horry, J. P.; deWaele, D., eds. New frontiers in resistance breeding for nematode, Fusarium and Sigatoka. Kuala Lumpuro 1996:173–181.Google Scholar
  16. Hwang, S.; Tang, C. Y. Improved resistance to Fusarium wilt through somaclonal variation in Cavendish bananas. In: Proc. Conf. on Challenges for Banana Production and Utilization in 21st Century, September 24–25, 1996. Trichy, India: Association for Improvement in Production and Utilization of Banana (AIPUB): 2000:195–208.Google Scholar
  17. Israeli, Y.; Ben-Bassat, D.; Reuveni, O. Selection of stable banana clones which do not produce dwarf somaclonal variants during in vitro culture. Sci. Hort. 67:197–205; 1996.CrossRefGoogle Scholar
  18. Israeli, Y.; Reuveni, O.; Lahav, E. Qualitative aspects ofsomaclonal variations in banana propagated by in vitro techniques. Sci. Hort. 48:71–88; 1991.CrossRefGoogle Scholar
  19. Jambhale, N. D.; Patil, S. C.; Jadhav, A. S.; Pawar, S. V.; Waghmode, B. D. Effect of number of subcultures on in vitro multiplication of four banana clones. Infomusa 10(1):38–39; 2001.Google Scholar
  20. Kalloo, G. Banana and plantation research in India—a perspective. Global Conf. on Banana and Plantain, October 28–31, Bangalore, India. Abstract; 2002:5–6.Google Scholar
  21. Krikorian, A. D.; Irizarry, H.; Cronauer-Mitra, S.; Rivera, E. Clonal fidelity and variation in plantain (Musa AAB) regenerated from vegetative stem and floral axis tips in vitro. Ann. Bot. 71:519–535; 1993.CrossRefGoogle Scholar
  22. Larkin, P. J.; Scowcroft, W. R. Somaclonal variation—a novel source of variability from cell cultures for plant improvement. Theor. Appl. Genet. 60:197–214; 1981.CrossRefGoogle Scholar
  23. Lindsey, K.; Jones, M. Biotechnologia vegetal agricola. Zaragoza: Editorial Acribia S. A.; 1989.Google Scholar
  24. Lo Schiavo, F.; Pitto, L.; Giuliano, G.; Nuti-Ronchi, V.; Marazziti, D.; Vergera, R.; Orselli, S.; Terzi, M. DNA methylation of embryogenic carrot cell cultures and its variations as caused by mutation, differentiation, hormones and hypomethylating drugs. Theor. Appl. Genet. 77:325–331; 1989.CrossRefGoogle Scholar
  25. Lopez, J. Genetic improvement of Musa spp. by in vitro mutational plant breeding. Report of the first FAO/IAEA research co-ordination meeting on cellular biology and biotechnology including mutations techniques for creation of new useful banana genotypes. Vienna: FAO/IAEA; 1995:20–24.Google Scholar
  26. Lorz, H.; Gobel, E.; Brown, P. Advances in tissue culture and progress towards genetic transformation of cereals. Plant Breed. 100:1–25; 1988.CrossRefGoogle Scholar
  27. Martin, M. J. G.; Grillo, G. S.; Dominguez, A. M. The use of randomly amplified polymorphic DNA (RAPD) for the study of genetic diversity and somaclonal variation in Musa. Int. Soc. Hort. Sci. 490:445–454; 1998.Google Scholar
  28. Martinez, O.; Reyes, L. M.; Beltran, M. Chemovariability in the genus Musa: similarities and differences. Infomusa 7(2):16–20; 1998.Google Scholar
  29. Monette, P. L. Grapevine (Vitis vinifera L.). In: Bajaj, Y. P. S., ed. Biotechnology in agriculture and forestry, vol. 6. Berlin: Springer-Verlag; 1988:3–37.Google Scholar
  30. Munksgaard, D.; Mattsson, O.; Okkele, F. T. Somatic embryo development in carrot is associated with an increase in levels of S-adenosylmethionine, S-adenosylhomocysteine and DNA methylation. Physiol. Plant. 93:5–10; 1995.CrossRefGoogle Scholar
  31. Okkels, F. T. A theory explaining formation of somatic embryogenic cells by auxin induced inhibition of DNA methylation. Physiol. Plant. 73:11A; 1988.Google Scholar
  32. Pancholi, N. C.; Wetten, A.; Caligari, P. D. S. Detection of levels of somaclonal variation in Musa using molecular markers. Meeting on tropical plants. 11–15 March, Montpellier; 1996:2 pp.Google Scholar
  33. Patil, P. V.; Navale, P. A. Somaclonal variation in fruit crops: a review. J. Maharashtra Agric. Univ. 25(1):8–14; 2000.Google Scholar
  34. Peschke, V. M.; Phillips, R. L. Genetic implications of somaclonal variation in plants. Adv. Genet. 30:41–75; 1992.CrossRefGoogle Scholar
  35. Phillips, R. L.; Kaeppler, S. M.; Peschke, V. M. Do we understand somaclonal variation? In: Nijkamp, H. J. J.; van der Plas, L. H. W.; van Aartrijk, J., eds. Proc. 7th Int. Congress Plant Tissue Cell Culture. Dordrecht: Kluwer: 1990:131–141.Google Scholar
  36. Rodrigues, P. H. V.; Tulmann Neto, A.; Cassieri Neto, P.; Mendes, B. M. J. Influence of the number of subcultures on somaclonal variation in micropropagated Nanico (Musa spp., AAA group). Acta Hort. 490:469–473; 1998.Google Scholar
  37. Samuel, J. C.; Singh, H. P. Developmental efforts for promoting microirrigation in banana. Global Conf. on Banana and Plantain. October 28–31, Bangalore, India. Abstracts: 2002:231.Google Scholar
  38. Sandoval, J.; Kerbellec, F.; Cote, F.; Doumas, P. Distribution of endogenous gibberellins in dwarf and giant off-type banana (Musa AAA, ev. ‘Grand Naine’) plants from in vitro propagation. Plant Growth Reg. 17:219–224; 1995.CrossRefGoogle Scholar
  39. Shchukin, A.; Ben-Bassat, D.; Israeli, Y. Plant regeneration via somatic embryogenesis in Grand Naine banana and its effect on somaclonal variation. Acta Hort. 447:317–318; 1997.Google Scholar
  40. Shchukin, A.; Ben-Bassat, D.; Israeli, Y. Somaclonal variation and horticultural performance of ‘Grand Naine’ bananas multiplied via somatic embryogenesis or shoot-tip culture. In: Plant biotechnology and in vitro biology in the 21st century. Jerusalem: International Association for Plant Tissue Culture. Abstracts; 1998:14–19.Google Scholar
  41. Shepherd, K.; Souza, F. V. D.; Da Silva, K. M. Mitotic instability in banana varieties. IV. BAP concentration and effects of number of subcultures. Fruits 51:211–216; 1996.Google Scholar
  42. Singh, H. P. Indian bananas—issues and strategies. Global Conf. on Banana and Plantain, October 28–31, Bangalore, India. Abstracts; 2002:1–2.Google Scholar
  43. Skirvin, R. M.; McPheeters, K. D.; Norton, M. Sources and frequency of somaclonal variation. HortScience 29:1232–1237; 1994.Google Scholar
  44. Smith, M. K. A review of factors influencing the genetic stability of micropropagated bananas. Fruits 43:219–223; 1988.Google Scholar
  45. Smith, M. K.; Hamill, S. D.; Doogan, V. J.; Daniells, J. W. Characterisation and early detection of an off-type from micropropagated ‘Lady Finger’ bananas. Australian J. Exp. Agri. 39:1017–1023; 1999.CrossRefGoogle Scholar
  46. Stover, R. H. Somaclonal variation in Grand Naine and Saba banana in nursery and field. ACIAR Proc. Series, Australian Center for Intl. Agric. Res. 21:136–139; 1987.Google Scholar
  47. Sunderland, N. Nuclear cytology. In: Street, H. E., ed. Plant tissue and cell culture. Oxford: Blackwell Scientific Publishers; 1977:177–205.Google Scholar
  48. Tang, C. Y.; Liu, C. C.; Hwang, S. C. Improvement of the horticultural traits of Cavendish banana (Musa spp., AAA group I). Selection and evaluation of a semi-dwarf clone resistant to Fusarium wilt. J. Chinese Soc. Hort. Sci. 46:173–182; 2000.Google Scholar
  49. Teisson, C.; De Langhe, E. Biotechnologies for banana and plantain. In: Baylis, E., ed. Plant biotechnologies for developing countries, UK: The Trinity Press; 1989:241–243.Google Scholar
  50. Thomas, J.; Cullis, M. A.; Kunert, K.; Engelborghs, I.; Swennen, R.; Cullis, C. A. DNA markers for the detection of genomic integrity. In: 3rd Int. Symp. on Molecular and Cellular Biology of Banana, September 9–11, Leuven, Belgium. Abstracts: 2002:18.Google Scholar
  51. Trujillo, I.; Garcia, E. Strategies for obtaining somaclonal variants resistant to yellow Sigatoka (Mycosphaerella musicola). Infomusa 5(2):12–13; 1996.Google Scholar
  52. Uma, S.; Selvarajan, R.; Saraswathi, M. S.; Rameshkumar, A.; Sathiamoorthy, S. Production of quality planting material in banana. Global Conf. on Banana and Plantain, October 29–31, Bangalore, India. Souvenir; 2002:24–30.Google Scholar
  53. Ventura, J.; De, L. C.; Rojas, M. E.; Year, E. C.; Lopez, J.; Rodriguez, N. A. A. Somaclonal variation in micropropagated bananas (Musa spp.). Technical en la Agricultur Viandas 11(1):7–16; 1988.Google Scholar
  54. Vidhya, R.; Ashalatha, S. N. In-vitro culture, pseudostem pigmentation and genetic characterization of Musa acuminata cv. Red. Global Conf. on Banana and Plantain, October 28–31, Bangalore, India. Abstracts; 2002:65.Google Scholar
  55. Watson, J. D.; Gilman, M.; Witkowsk, J.; Zoller, M. eds. Recombinant DNA. New York: Scientific American Books; 1992:274.Google Scholar
  56. Xic, Q. J.; Rush, M. C.; Oard, J. H. Homozygous variation in rice somaclones: nonrandom variation instead of mitotic recombination. Crop Sci. 35:954–957; 1995.CrossRefGoogle Scholar
  57. Zaffari, G. R.; Peres, L. E. P.; Kerbany, G. B. Endogenous levels of cytokinins, indoleacetic acid, abscisic acid and pigments in varicgated somaclones of micropropagated banana leaves. J. Plant Growth Reg. 17(2):59–61; 1998.CrossRefGoogle Scholar
  58. Zhenxun, W.; Hongxian, L. Chromosome aberration in banana micropropagation. Acta Genet. Sin. 24:550–560; 1997.Google Scholar

Copyright information

© Society for In Vitro Biology 2003

Authors and Affiliations

  • Leela Sahijram
    • 1
    Email author
  • Jaya R. Soneji
    • 1
  • K. T. Bollamma
    • 1
  1. 1.tissue Culture Laboratory-I, Division of BiotechnologyIndian Institute of Horticultural ResearchBangaloreIndia

Personalised recommendations