In Vitro Cellular & Developmental Biology - Plant

, Volume 39, Issue 6, pp 623–628 | Cite as

Effects of proliferation, maturation, and desiccation methods on conversion of soybean somatic embryos

  • Hangsik Moon
  • David F. Hildebrand


Cermination of soybean [Glycine max (L.) Merrill] somatic embryos and conversion to whole plants are generally low. This study was conducted to investigate the effects of proliferation, maturation, and desiccation methods on conversion of soybean somatic embryos to plants. Soybean cv. Jack somatic embryos, proliferated on a solid medium containing 90.5 μM (20 mgl−1) 2.4-dichlorophenoxyacetic acid (2.4-D) (MSD20), showed a regeneration rate signficantly higher than those proliferated in a liquid medium containing 45.25 μM (10mgl−1) 2,4-D (FN Lite). When a liquid medium without 2,4-D and B5 vitamins (FN Superlite) was used for maturation, the duration of time necessary for embryo development could be shortened by more than a month compared to maturation on a standard solid medium (MSM6AC). An air-drying method, in which somatic embryos were desiccated in an empty sealed Petri dish for 3–5d, gave rise to the best germination efficiency among the four desiccation methods tested: fast, slow, air, and KCl methods. The final percentage of moisture seems important since embyros over-dried by the fast and slow methods did not convert well into plants.

Key words

soybean somatic embryogenesis liquid medium solid medium desiccation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bailey, M. A.; Boerma, H. R.; Parrott, W. A. Genotype effects on proliferative embryogenesis and plant regeneration of soybean. In Vitro Cell. Dev. Biol. Plant. 29:102–108; 1993a.Google Scholar
  2. Bailey, M. A.; Bocrma, H. R.; Parrott, W. A. Genotype-specific optimization of plant regeneration from somatic embryos of soybean. Plant Sci. 93:117–120; 1993b.CrossRefGoogle Scholar
  3. Brenac, P.; Horbowicz, M.; Downer, S.M.; Dickerman, A. M.; Smith, M. E.; Obendorf, R. L. Raffinose accumulation related to desiccation tolerance during maize (Zea mays L.) seed development and maturation. J. Plant Physiol. 150:481–488; 1997.Google Scholar
  4. Buchheim, J. A.; Colburn, S. M.; Ranch, J. P. Maturation of soybean somatic embryos and the transition to plantlt growth. Plant Physiol. 89:768–775; 1989.PubMedGoogle Scholar
  5. Dalmer, M. L. Accumulation of embryo storage products during in vitro embryogenesis of soybean [Glycine max (L.) Merr.]. Ph.D. dissertation, University of Kentucky; 1988.Google Scholar
  6. Dahmer, M. L.; Collins, G. B.; Hildebrand, D. F. Lipid content and composition of soybean somatic embryos. Crop Sci. 31:741–746; 1991.CrossRefGoogle Scholar
  7. Finer, J.-J.; Nagasawa, A. Development of an embryogenic suspension culture of soybean (Glycine max Merrill.). Plant Cell Tiss. Organ Cult. 15:125–136; 1988.CrossRefGoogle Scholar
  8. Camborg, O. L.; Miller, R. A.; Ojima, K. Nutrient requirements of suspension cultures of soybean root cells. Exp. Cell Res. 50:151–158; 1968.CrossRefGoogle Scholar
  9. Hammatt, N.; Davey, M. R. Somatic embryogenesis and plant regeneration from cultured zygotic embryos of soybean (Glycine max L. Merr.). J. Plant Physiol. 128:219–226; 1987.Google Scholar
  10. Horbowicz, M.; Obendorf, R. L.; McKersic, B. D.; Viands, D. R. Soluble saccharides and cyclitols in alfalfa (Medicago sativa L.) somatic embryos, leaflets, and mature seeds Plant Sci. 109:191–198; 1995.CrossRefGoogle Scholar
  11. Komatsuda, T.; Ohyama, K. Genotypes of high competence for somatic embryogenesis and plant regeneration in soybean Glycine max. Theor. Appl. Genet. 75:695–700; 1988.CrossRefGoogle Scholar
  12. Lazzeri, P. A.; Hildebrand, D. F.; Collins, G. B. A procedure for plant regeneration from immature cotyledon tissue of soybean. Plant Mol. Biol. Rep. 3:160–167; 1985.Google Scholar
  13. Lazzeri, P. A.; Hildebrand, D. F.; Collins, G. B. Soybean somatic embryogenesis: effects of hormones and culture manipulations. Plant Cell Tiss. Organ Cult. 10:197–208; 1987a.CrossRefGoogle Scholar
  14. Lazzeri, P. A.; Hildebrand, D. F.; Collins, G. B. Soybean somatic embryogenesis: effects of nutritional, physical and chemical factors. Plant Cell Tiss. Organ Cult. 10:209–220; 1987b.CrossRefGoogle Scholar
  15. Lazzeri, P. A.; Hildebrand, D. F.; Sumega, J.; Williams, E. G.; Collins, G. B. Soybean somatic embryogenesis: interactions between sucrose and auxin. Plant Cell Rep. 7:517–520; 1968.CrossRefGoogle Scholar
  16. Lining, T.; Brown, D. C. W.. Improvement of soybean somatic embryo development and maturation by abscisic acid treatment. Can. J. Plant Sci. 80:271–276; 2000.Google Scholar
  17. Lippman, B.; Lippmann, G. Soybean embryo culture: factors influencing plant recovery from isolated embryos. Plant Cell Tiss. Organ Cult. 32:83–90; 1993.CrossRefGoogle Scholar
  18. Liu, W.; Moore, P. J.; Collins, G. B. Somatic embryogenesis in soybean via somatic embryo cycling. In Vitro Cell. Dev. Biol. Plant 28:153–160; 1992.CrossRefGoogle Scholar
  19. Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15:473–497; 1962.CrossRefGoogle Scholar
  20. Parrott, W. A. Somatic embryogenesis of soybean.; 2000.Google Scholar
  21. Parrott, W. A.; Dryden, G.; Vogt, S.; Hildebrand, D. F.; Collins, G. B.; Williams, E. G. Optimization of somatic embryogenesis and embryo germination in soybean. In Vitro Cell. Dev. Biol. 24:817–820; 1988.Google Scholar
  22. Samoylov, V. M.; Tucker, D. M.; Parrott, W. A. Soybean [Glycine max (L.) Merrill] embryogenic cultures: the role of sucrose and total nitrogen content on proliferation. In Vitro Cell Dev. Biol. Plant 34:8–13; 1998a.Google Scholar
  23. Somoylov, V. M.; Tucker, D. M.; Thiband-Nissen, F.; Parrott, W. A. A liquid medium-based protocol for rapid regeneration from embryogenic soybean cultures. Plant Cell Rep. 18:49–54; 1998.CrossRefGoogle Scholar
  24. Slawinska, J.; Obendorf, R. L. Soybean somatic embryo maturation: composition, respiration and water relations. Seed Sci. Res. 1:251–262; 1991.Google Scholar
  25. TeKrony, D. M.; Egli, D. R.; Balles, L.; Pfeiffer, T.; Fellows, R. J. Physiological maturity in soybean. Agron. J. 71:771–775; 1979.CrossRefGoogle Scholar
  26. Trick, H. N.; Dinkins, R. D.; Samtarem, E. R.; Di, R.; Samoylov, V.; Meurer, C. A.; Walker, D. R.; Parrott, W. A.; Finer, J. J.; Collins, G. B. Recent advances in soybean transformation. Plant Tiss. Cult. Biotechnol. 3:9–26; 1997.Google Scholar
  27. VerNooy, C. D.; Thorne, J. H.; Lin, W.; Rainbird, R. M. Cessation of assimilate uptake in maturing soybean seeds. Plant Physiol. 82:222–225; 1986.PubMedGoogle Scholar
  28. Walker, D. R.; Parrott, W. A. Effect of polyethylene glycol and sugar alcohols on soybean somatic embryo germination and conversion. Plant Cell Tiss. Organ Cult. 64:55–62; 2001.CrossRefGoogle Scholar

Copyright information

© Society for In Vitro Biology 2003

Authors and Affiliations

  1. 1.Department of AgronomyUniversity of KentuckyLexington

Personalised recommendations