Advertisement

Micropropagation of Eucalyptus nitens maiden (Shining gum)

  • Filomena Gomes
  • Jorge M. Canhoto
Article

Summary

Eucalyptus nitens Maiden (shining gum) is a frost-tolerant species of Eucalyptus that can be used as an alternative species to Eucalyptus globulus in some regions of Portugal where winter temperatures are too low. Seedlings and 1-yr-old shoot tips and nodes were used for micropropagation of E. nitens. The best multiplication rate (2.25) was obtained when seedling shoots (<15 mm) were cultured on a medium containing the major nutrients (at half-strength) and minor elements of Murashige and Skoog (1962) medium, the organics of De Fossard medium (De Fossard et al., 1974) and a combination of benzyladenine (0.9 μM) and 1-naphthaleneacetic acid (0.05 μM). Seedling cuttings (4-,8-, and 10-wk-old) rooted well on media containing several concentrations of 3-indolebutyric acid (4.9, 9.8, and 14.8 μM) or 3-indoleacetic acid (5.7, 11.4, and 17.1 μM), giving frequencies of root induction above 80%. With this type of explant, root formation was also found on basal medium without growth regulators. Rooting of in vitro-propagated shoots obtained from seedlings (8-wk-old) after four subcultures (every 3 wk) was more difficult, with the best results obtained on a medium containing 14.7 μM 3-indolebutyric acid (60.0% root induction). No root formation was achieved when shoots from 1-yr-old explants were used. After a period of 4 mo., 96.3% of the plants transferred to the greenhouse survived acclimatization.

Key words

shining gum shoot proliferation rooting acclimatization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arezki, O.; Boxus, P.; Kevers, C.; Gaspar, T. Hormonal control of proliferation in meristematic agglomerates of Eucalyptus camaldulensis Dehn. In Vitro Cell. Dev. Biol. Plant 36:398–401; 2000.CrossRefGoogle Scholar
  2. Azmi, A.; Noin, M.; Landré, P.; Prouteau, M.; Boudet, A. M.; Chriqui, D. High frequency plant regeneration from Eucalyptus globulus Labill. Hypocotyls: ontogenesis and ploidy level of the regenerants. Plant Cell Tiss. Organ Cult. 51:9–16; 1997.CrossRefGoogle Scholar
  3. Bandyopadhyay, S.; Cane, K.; Rasmussen, G. Hamill, D. Efficient plant regeneration from seedling explants of two commercially important eucalypt species—Eucalyptus nitens and E. globulus. Plant Sci. 140:189–198; 1999.CrossRefGoogle Scholar
  4. Bandyopadhyay, S.; Hamill, D. Ultrastructural studies of somatic embryos of Eucalyptus nitens and comparisons with zygotic embryos found in mature seeds. Ann. Bot. 86:237–244; 2000.CrossRefGoogle Scholar
  5. Bennett, I. J.; McComb, J. A.; Tonkin, C. M.; McDavid, D. A. J. Alternating cytokinins in multiplication media stimulates in vitro shoot growth and rooting of Eucalyptus globulus Labill. Ann. Bot. 74:53–58; 1994.CrossRefGoogle Scholar
  6. Blomstedt, C.; Cameron, J.; Whiteman, P.; Chandler, S. F. Micropropagation of juvenile Eucalyptus regnans (Mountain Ash). Aust. J. Bot. 39:179–186; 1991.CrossRefGoogle Scholar
  7. Brooker, M. I. K.; Kleinig, D. A. Field guide to eucalypts, vol. 1, Southeastern Australia. Melbourne: Inkata Press; 1983:288.Google Scholar
  8. Canhoto, J. M.; Lopes, M. L.; Cruz, G. S. Somatic embryogenesis in myrtaceous plants. In: Jain, S. M.; Gupta, P. K.; Newton, R. J., eds. Somatic embryogenesis in woody plants, vol. 4 Dordrecht: Kluwer Academic Publishers; 1999:293–340.Google Scholar
  9. Chang, S. H.; Donald, D. G. M.; Jacobs, G. Micropropagation of Eucalyptus radiata ssp. radiata using explants from mature and coppice material. S. Afr. For. J. 162:43–47; 1992.Google Scholar
  10. Chaperon, H. Vegetative propagation of Eucalyptus. European Program Erasmus. Culture des essences forestières à croissance rapide et impact sur l'environment. Ormea, Italy, June, 17–27; 1991;13.Google Scholar
  11. De Fossard, R. A.; Nitsch, C.; Cresswell, R. J.; Lee, H. C. M. Tissue and organ culture of Eucalyptus. NZ J. For. Sci. 4:267–278; 1974.Google Scholar
  12. De Little, D. W.; Tibbits, W. N.; Rasmussen, G. F.; Ravenwood, I. C. Genetic improvement strategy for APPM eucalypt tree farms in Tasmania. In: Mass production technology for genetically improved fast growing forest tree species, vol. I. Symposium Bordeaux: AFOCEL/IUFRO; 1992:275–282.Google Scholar
  13. DGF, http://www.dgf.min-agricultura.pt/index2.htm (Direcção Geral das Florestas, Retrieved January 13, 2000 from the World Wide Web).Google Scholar
  14. Diallo, N.; Duhoux, E. Organogenèse et multiplication in vitro chez l'Eucalyptus camaldulensis. J. Plant Physiol. 115:177–182; 1984.Google Scholar
  15. Duncan, D. B. Multiple range and multiple F tests. Biometry 11:1–42; 1955.CrossRefGoogle Scholar
  16. Durand-Cresswell, R.; Boulay, M.; Franclet, A. Vegetative propagation of Eucalyptus In: Bonga, J. M.; Durzan, D. J., eds. Tissue culture in forestry. The Hague: Martinus Nijhoff: 1982:150–181.Google Scholar
  17. Durand-Cresswell, R.; Nitsch, C. Factors influencing the regeneration of Eucalyptus grandis by organ culture. Acta Hort. 78:149–155; 1977.Google Scholar
  18. Furze, M. J.; Cresswell, C. F. Micropropagation of Eucalyptus grandis and nitens using tissue culture techniques. S. Afr. For. J. 135:20–23; 1985.Google Scholar
  19. Gautheret, R. J. La culture des tissues végétaux, techniques et réalisations. Paris: Masson ed.: 1959.Google Scholar
  20. Goes, E. Os eucaliptos, identificação e monografia de 121 espécies existentes em Portugal (in Portuguese). Lisbon: Portucel; 1985:372.Google Scholar
  21. Gomes, M. F. Estabelecimento de culturas in vitro e micropropagação da espécie Eucalyptus nitens Maiden (in Portuguese). Master thesis, FCT University of Coimbra, Coimbra; 2000.Google Scholar
  22. Gupta, P. K.; Mehta, U. J.; Mascarenhas, A. F. A tissue culture method for clonal propagation of mature trees of Eucalyptus torelliana and Eucalyptus camaldulensis Plant Cell Rep. 2:296–299; 1983.CrossRefGoogle Scholar
  23. Hartman, H. T.; Kester, D. E.; Davies, F. T., Jr.; Geneve, R. L. Plant propagation: principles and practices, 6th edn. New York, Prentice Hall Int. Inc.; 1997.Google Scholar
  24. Hartney, V. J. Vegetative propagation of the eucalypts. Aust. For. Res. 10:191–211; 1981.Google Scholar
  25. Hartney, V. J.. Vegetative propagation of Eucalyptus in vitro In: Colloque Intern. sur la Culture in vitro des Essences Forestières. Fontainebleau: IUFRO, AFOCEL; 1982:175–180.Google Scholar
  26. Hartney, V. J.; Baker, P. K. Vegetative propagation of Eucalyptus by tissue culture. In Symposium and workshop on genetic improvement and production of fast growing tree species. São Paulo, Brazil: IUFRO; 1980: 791–793.Google Scholar
  27. Kirdmanee, C.; Kitaya, Y.; Kozai, T. Effects of CO2 enrichment and supporting material in vitro on photoautotrophic growth of Eucalyptus plantlets in vitro and ex vitro. In Vitro Cell. Dev. Biol. Plant 31:144–149; 1995.Google Scholar
  28. Lainé, E.; David, A. Regeneration of plants from leaf explants of micropropagated clonal Eucalyptus grandis. Plant Cell Rep. 13:473–476; 1994.CrossRefGoogle Scholar
  29. Lakshmi Sita, G. Morphogenesis and plant regeneration from cotyledonary cultures of Eucalyptus. Plant Sci. 14:63–68; 1979.CrossRefGoogle Scholar
  30. Lakshmi Sita, G. Progress towards the in vitro clonal propagation of Eucalyptus grandis. In: Withers, L. A.; Alderson, P. G., eds. Plant tissue culture and its agricultural applications. London: Butterworths; 1986:159–166.Google Scholar
  31. Le Roux, J. J.; Van Staden, J. Micropropagation and tissue culture of Eucalyptus—a review. Tree Physiol. 9:435–477; 1991.PubMedGoogle Scholar
  32. McComb, J. A.; Bennett, I. J. Encalypts (Eucalyptus spp.). In: Bajaj, Y. P. S., ed. Biotechnology in agriculture and forestry, vol. 1. Trees I. Berlin: Springer-Verlag; 1986;340–362.Google Scholar
  33. McComb, J. A.; Bennett, I. J.; Tonkin, C. In vitro propagation of Eucalyptus species. In: Taji, A.; William, R., eds. Tissue culture of Australian plants. Armidale, NSW: University of New England Print; 1996: 112–156.Google Scholar
  34. McVaugh, R. Tropical Americana Myrtaceae, II. Fieldiana: Bot. 29:395–532; 1963.Google Scholar
  35. Muralidharan, E. M.; Mascarenhas, A. F. Somatic embryogenesis in Eucalyptus. In: Jain, S. M.; Gupta, P. K.; Newton, R. J., eds. Somatic embryogenesis in woody plants, vol. 2. Dordrecht: Kluwer Academic Publishers; 1995:303–313.Google Scholar
  36. Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15:473–497; 1962.CrossRefGoogle Scholar
  37. Nugent, G.; Chandler, S. F.; Whiteman, P.; Stevenson, T. W. Adventitious bud induction in Eucalyptus globulus Labill. In Vitro Cell. Dev. Biol. Plant 37:388–391; 2001.CrossRefGoogle Scholar
  38. Orme, R. K.; Banham, P. K.; Allison, K.; Russell, S. Cold caustic soda pulps from young plantation of Eucalyptus nitens and globulus. Appita 46:119–122; 1993.Google Scholar
  39. Sankara Rao, K.; Venkateswara, R. Tissue culture of forest trees: clonal multiplication of Eucalyptus grandis L. Plant Sci. 40:51–55; 1985.CrossRefGoogle Scholar
  40. Sharma, S. K.; Ramamurthy, V. Micropropagation of 4-year-old elite Eucalyptus tereticornis trees. Plant Cell Rep. 19:511–518; 2000.CrossRefGoogle Scholar
  41. Steel, R. G.; Torrie, J. H. Principles and procedures of statistics: a biometrical approach, 2nd edn. Singapore: McGraw-Hill International Book Co.; 1981:633.Google Scholar
  42. Tibok, A.: Davey, M. R.; Power, J. B. Plant regeneration from cultured hypocotyl explants of Eucalyptus and Acacia seedlings. VIII International Congress Plant Tissue and Cell Culture, Firenze; 1994:165.Google Scholar
  43. Trindade, M. H. Eucalyptus globulus Labill: systems for in vitro regeneration. PhD thesis, Faculty of Sciences, Lisbon; 1996.Google Scholar
  44. Volker, P. W.; Owen, J. V.; Borralho, N. M. G. Genetic variances and covariances for frost tolerance in Eucalyptus globulus and E. nitens. Silvae Genet. 43:366–372; 1994.Google Scholar
  45. White, P. R. A handbook of plant tissue culture. Lancaster, PA: Jacques Cattel Press; 1943:277.Google Scholar
  46. Williams, D.; Whiteman, P.; Cameron, J.; Chandler, S. F. Inter-and intrafamily variability for rooting capacity in micropropagated Eucalyptus globulus and Eucalyptus nitens. In: Mass production technology for genetically improved fast growing forest tree species, vol. II. Symposium Bordeaux: AFOCEL/IUFRO; 1992:177–181.Google Scholar

Copyright information

© Society for In Vitro Biology 2003

Authors and Affiliations

  1. 1.Departmento FlorestalEscola Superior Agrária de CoimbraCoimbraPortugal
  2. 2.Instituto do Ambiente e Vida, Departmento de Botánica, Faculdade de Ciências e TecnologiaUniversidade de CoimbraCoimbraPortugal

Personalised recommendations