Advertisement

In Vitro Cellular & Developmental Biology - Plant

, Volume 38, Issue 6, pp 573–580 | Cite as

Performance of hairy root cultures of Cichorium intybus L. In bioreactors of different configurations

  • Harsh Pal BaisEmail author
  • B. Suresh
  • K. S. M. S. Rachavarao
  • G. A. Ravishankar
Article

Summary

A transformed root culture of Cichorium intybus L. cv. Lucknow Local grown in different configurations of bioreactors was examined. The roots grown in an acoustic mist bioreactor showed the best performance in terms of increased specific growth rate (0.072d−1) and esculin content (18.5gl−1), the latter of which was comparable to that of shake flask data. C. intybus hairy root cultures grown in an acoustic mist bioreactor produced nearly twice as much esculin as compared to roots grown in bubble column and nutrient sprinkle bioreactors. Studies relating to on-line estimation of conductivity and osmolarity to predict the growth of hairy root cultures are also discussed. The results demonstrate the efficacy and the advantages of an acoustic mist bioreactor for the cultivation of hairy root cultures, especially with reference to C. intybus hairy roots.

Key words

Cichorium intybus transformed root cultures scale-up esculin acoustic mist bioreactor hairy root cultures 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bais, H. P.; Ravishankar, G. A. Cichorium intybus Linn.-cultivation/processing/utility/value addition, current status and newer prospective. J. Sci. Food. Agri. 51:467–484;2001.CrossRefGoogle Scholar
  2. Bais, H. P.; Sudha, G.; Ravishankar, G. A. Enhancement of growth and coumarin production in hairy root cultures of Cichorium intybus, L. cv. Lucknow Local (Witloof Chicory) under the influence of fungal elicitors. J. Biosci. Bioeng. 90:640–645; 2000.CrossRefGoogle Scholar
  3. Buer, C. S.; Correll, M. J.; Smith, T. C.; Towler, M. J.; Weathers, P. J.; Nadler, M.; Seaman, J.; Wakerz, D. Development of a non-toxic acoustic window mist bioreactor and selective growth data. In Vitro Cell. Dev. Biol. Plant 32:299–304; 1996.Google Scholar
  4. Buitelaar, R. M.; Langenhoff, A. A. M.; Heidstra, R.; Tramper, J.. Growth and thiophene production by hairy root cultures of Tagetes patula in various two-liquid-phase bioreactors. Enzym. Microb. Technol. 13:487–494; 1991.CrossRefGoogle Scholar
  5. Christey, M. C. Use of Ri-mediated transformation for production of transgenic plants. In Vitro Cell. Dev. Biol. Plant 37:687–700; 2001.CrossRefGoogle Scholar
  6. Di Iorio, A. A.; Cheetham, R. D.; Weathers, P. J. Carbon dioxide improves the growth of hairy roots cultured on solid medium and in nutrient mists. Appl. Microbiol. Biotechnol. 37:463–467; 1992.CrossRefGoogle Scholar
  7. Doran, P. M. Design of mixing systems for plant cell suspensions in stirred reactors. Biotechnol. Prog. 15: 319–335; 1999.PubMedCrossRefGoogle Scholar
  8. Hilton, M. C.; Wilson, P. D. G.; Robins, R. J.; Rhodes, M. J. C. Transformed root cultures—fermentation aspects. In: Robins, R. J.; Rhodes, M. J. C. eds. Manipulating secondary metabolism in culture. Cambridge: Cambridge University Press: 1988:239–245.Google Scholar
  9. Kanokwaree, K.; Doran, P. M. Application of membrane tubing aeration and PFC to uptake oxygen during the growth of hairy root cultures. Biotechnol. Bioeng. 58:515–528; 1998.CrossRefGoogle Scholar
  10. Kim, Y.; Wyslouzil, B. E.; Weathers, P. J. A comparative study of mist and bubble column reactors in the in vitro production of artemesin. Plant Cell Rep. 20:451–455;2001.CrossRefGoogle Scholar
  11. Kino-oka, M.; Hitaka, Y.; Ninomiya, K.; Taya, M.; Tone, S. Segmentation of plant hairy roots promotes lateral root elongation and subsequent growth. J. Biosci. Bioeng. 88:690–692; 1999.PubMedCrossRefGoogle Scholar
  12. Kwok, K. H.; Doran, P. M. Kinetic and stoichiometric analysis of hairy roots in a segmented bubble column reactor. Biotechnol. Prog. 11: 429–435; 1995.CrossRefGoogle Scholar
  13. Lee, K. T.; Suzuki, T.; Yamakawa, T.; Kodama, T.; Igarashi, Y.; Shimomura, K. Production of tropane alkaloids by transformed root cultures of Atropa belladonna in stirred bioreactors with a stainless steel net. Plant Cell Rep. 18:567–571; 1999.CrossRefGoogle Scholar
  14. Madhusudhan, R.; Rao, S. R.; Ravishankar, G. A. Osmolarity as a measure of growth of plant cells in suspension cultures. Enzym. Microb. Technol. 17:989–991; 1995.CrossRefGoogle Scholar
  15. McKelvey, S. A.; Gehrig, J. A.: Hollar, K. A.; Curtis, W. R. Growth of plant root cultures in liquid-and gas-dispersed, reactor environments. Biotechnol. Prog. 9:317–322; 1993.PubMedCrossRefGoogle Scholar
  16. Murashige, M.; Skoog, T. A revised medium for rapid growth and bioassays of tobacco tissue cultures. Physiol. Plant. 15:473–497; 1962.CrossRefGoogle Scholar
  17. Nuutila, A. M.; Lindqvist, A.-S.; Kauppinen, V. Growth of hairy root cultures of strawberry (Fragaria X ananassa Duch.) in three different types of bioreactors. Biotechnol. Tech. 11: 363–366; 1997.CrossRefGoogle Scholar
  18. Ohmura, T.; Howell, R. W. Inhibitory effect of water on oxygen consumption by plant materials. Plant Physiol. 35:184–188; 1960.PubMedCrossRefGoogle Scholar
  19. Raghavarao, K. S. M. S;; Bais, H. P.; Suresh, B.; Ramesh, T.; Ghidayal, N. P.; Ravishankar, G. A. An acoustic mist bioreactor. Patent filed with Council Scientific Industrial Research (CSIR), CFTRI File No. 2052, NF No. 71/01, Del No. 283/Del/2001, Del Date: March 12, 2001.Google Scholar
  20. Ramakrishnan, D.; Luyk, D.; Curtis, W. R. Monitoring biomass in root cultures systems. Biotechnol. Bioeng. 62:711–721; 1999.PubMedCrossRefGoogle Scholar
  21. Ramakrishnan, D.; Salim, J.; Curris, W. R. Inoculation and tissue distribution in pilot-scale plant root bioreactors. Biotechnol. Tech. 8:639–644;1994.CrossRefGoogle Scholar
  22. Robbins, M. P.; Hartnoll, J.; Morris, P. Phenylpropanoid defense responses in transgenic Lotus corniculatus. I. Glutathione elicitation of isoflavan phytoalexin in transformed root cultures. Plant Cell Rep. 10:59–62; 1991.CrossRefGoogle Scholar
  23. Shanks, J. V.; Morgon, Y. Plant hairy root cultures. Curr. Opin. Biotechnol. 10:151–155; 1999.PubMedCrossRefGoogle Scholar
  24. Sharp, J. M.; Doran, P. M. Characteristics of growth and tropane alkaloid synthesis in Atropa belladonna roots transformed by Agrobacterium rhizogenes. J. Biotechnol. 16:171–186; 1990.CrossRefGoogle Scholar
  25. Suresh, B.; Rajasekharan, T.; Rao, S. R.; Raghavarao, K. S. M. S.; Ravishankar, G. A. Studies on osmolarity, conductivity and mass transfer for selection of a bioreactor for Tagetes patula L. hairy roots. Process Biochem. 36:987–993; 2001.CrossRefGoogle Scholar
  26. Taya, M.; Hegglin, M.; Prenosil, J. E.; Bourne, J. R. On-line monitoring of cell growth in plant tissue cultures by conductometry. Enzym. Microb. Technol. 11: 170–176; 1989.CrossRefGoogle Scholar
  27. Wealth of India. Council of Scientific and Industrial Research (CSIR), vol. 3: (revised) 161–169; 1992.Google Scholar
  28. Whitney, P. J. Novel bioreactors for the growth of roots transformed by Agrobacterium rhizogenes. Enzym. Microb. Technol. 14:13–17; 1992.CrossRefGoogle Scholar
  29. Williams, G. R. C.; Doran, P. M. Hairy root culture in liquid-dispersed bioreactor: characterisation of spatial heterogeneity. Biotechnol. Prog. 16:391–401; 2000.PubMedCrossRefGoogle Scholar
  30. Wilson, P. D. G. The pilot-scale cultivation of transformed roots. In: Doran, P. M., ed. Hairy roots: culture and applications. Amsterdam: Harwood Academic Publishers; 1997:179–190.Google Scholar
  31. Wilson, P. D. G.; Hilton, M. G.; Mechan, P. T. H.; Waspe, C. R.; Rhodes, M. J. C. The cultivation of transformed roots from laboratory plant to pilot scale. In: Abstracts of the VIIth IAPTC Congress on Plant Tissue and Cell Culture. Amsterdam, June 24–29. Dordrecht: Kluwer Academic Publishers; 1990:338.Google Scholar

Copyright information

© Society for In Vitro Biology 2002

Authors and Affiliations

  • Harsh Pal Bais
    • 1
    Email author
  • B. Suresh
    • 1
  • K. S. M. S. Rachavarao
    • 2
  • G. A. Ravishankar
    • 1
  1. 1.Department of Plant Cell BiotechnologyCentral Food Technological Research InstituteMysoreIndia
  2. 2.Department of Food EngineeringCentral Food Technological Research InstituteMysoreIndia

Personalised recommendations