Advertisement

The relationship between primary metabolites in reproductive structures of cowpea Vigna unguiculata (Fabaceae: Papilionidae) cultivars and field resistance to the flower bud thrips Megalurothrips sjostedti (Thysanoptera: Thripidae)

  • O. Y. AlabiEmail author
  • J. A. Odebiyi
  • M. Tamò
Article

Abstract

Preliminary screening of germplasm from the International Institute of Tropical Agriculture (IITA) showed that a number of cowpea Vigna unguiculata (L). Walp. cultivars have potential for resistance to the flower bud thrips, Megalurothrips sjostedti (Trybom). In an earlier study, 10 cultivars from this germplasm were selected and the mechanisms of resistance determined. Therefore, in this study, the basis of resistance operating in the cultivars was elucidated during the first and second planting seasons of 1998. Cowpea cultivars were analysed for primary metabolites (total protein content and glucose contents) to study their relationship with resistance parameters of M. sjostedti under field conditions. Total protein and glucose contents varied significantly (P< 0.01) in floral buds and flowers of the different cultivars, while in racemes there were little or no significant differences. Highly significant negative correlation coefficients were obtained between total protein contents in reproductive structures and resistance parameters, especially during the second season, regardless of cowpea cultivar, indicating that quality of total protein content plays a significant role in cowpea resistance to M. sjostedti. Significant (P< 0.05) correlation between damage indices and glucose content in Vita 7 and Kpodjiguegue is responsible for their susceptibility to M. sjostedti damage. Furthermore, presence of a unique protein band (20.1 kDa) in Moussa local, Sanzibanili and Sewe cultivars could be associated with resistance to flower bud thrips, regardless of quantity of total protein content in these and other test cultivars. Similarly, the specific band just above the 94 kDa in Vita 7 could be responsible for its susceptibility to M. sjostedti.

Key words

Megalurothrips sjostedti Vigna unguiculata total protein glucose content reproductive structures resistance 

Résumé

Un criblage préliminaire de la collection de l’Institut International d’Agriculture Tropicale (IITA) a montré que de nombreux cultivars de niébé Vigna unguiculata (L).Walp. présentent un potentiel de résistance au trips des bourgeons de fleurs Megalurothrips sjostedti (Trybom). Dans une étude antérieure, 10 cultivars de cette collection avaient été sélectionnés et les mécanismes de résistance identifiés. Dans cette étude, nous nous sommes intéressés aux facteurs responsables de cette résistance pendant les deux cycles culturaux de1998. Nous avons effectué une analyse des métabolites primaires (teneurs en protéines totales et en glucose) des cultivars afin de déterminer leurs influences sur les parame`tres de résistance au trips en conditions naturelles. Les teneurs en protéines et en glucose des bourgeons floraux et des fleurs sont significativement différentes (P < 0,01) sur les différents cultivars, mais il y a peu ou pas de différence au niveau des race`mes. Des coefficients de corrélation négatifs hautement significatifs ont été obtenus entre la teneur en protéines dans les structures reproductives et les parame`tres de résistance, en particulier pendant le second cycle cultural, quelque soit le cultivar, indiquant que la teneur en protéines joue un rôle important dans la résistance du niébé à M. sjostedti. Une corrélation significative (P < 0,05) entre l’importance des dégâts et la teneur en glucose chez tous les cultivars signifie que la sensibilité du cultivar Vita 7 à M. sjostedti est due à une forte teneur en glucose. Par ailleurs, la résistance des cultivars Moussa local, Sanzibanili et Sewe semble liée à la présence d’une protéine correspondant à une bande de 10,1 kDa alors que la sensibilité du cultivar Vita 7 serait liée à une protéine particuli`re présente au dessus de 94 kDa.

Mots Clés

Megalurothrips sjostedti Vigna unguiculata protéines totales glucose teneur structures reproductives résistance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alabi O. Y., Odebiyi J. A. and Tamò M. (2004) Effect of host plant resistance in some cowpea (Vigna unguiculata [L.] Walp.) cultivars on growth and developmental parameters of the flower bud thrips, Megalurothrips sjostedti (Trybom). Crop Protection 23, 83–88.CrossRefGoogle Scholar
  2. Ananthakrishnan T. N. (1993) Bionomics of thrips. Annual Review of Entomology 38, 71–92.CrossRefGoogle Scholar
  3. Anderson S. O. (1985) Sclerotization and tanning of the cuticle, pp. 59–74. In Comprehensive Insect Physiology, Biochemistry and Pharmacology, Vol. 3. Pergamon Press, Oxford.Google Scholar
  4. Bernays E. A. and Woodhead S. (1984) The need for high levels of phenylalanine in the diet of Schistocerca gregaria nymphs. Journal of Insect Physiology 30, 489–493.CrossRefGoogle Scholar
  5. Bliss F. A. (1975) Cowpea in Nigeria, pp. 151–158. In Nutritional Improvement of Food Legumes by Breeding. Proceedings of a Symposium for the United Nations Proteins Advisory Group (Edited by M. Miller), 3–5 July 1972, New York.Google Scholar
  6. Dubois M., Gilles K. A., Hamilton J. K., Rebers P. A. and Smith F. (1956) Colorimetric method for determination of sugars and related substances. Analytical Chemistry 28, 350–356.CrossRefGoogle Scholar
  7. Gornal A. G., Bandawill C. J. and David M. M. (1949) Determination of serum proteins by means of the Biuret reaction. Journal of Biological Chemistry 177, 751–766.Google Scholar
  8. Jackai L. E. N. and Daoust R. A. (1986) Insect pests of cowpea. Annual Review of Entomology 31, 95–119.CrossRefGoogle Scholar
  9. Jackai L. E. N. and Singh S. R. (1988) Screening techniques for host plant resistance to cowpea insect pests. Tropical Grain Legume Bulletin 35, 2–18.Google Scholar
  10. Laemmli U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 277, 680–685.CrossRefGoogle Scholar
  11. Lewis T. and Taylor L. R. (Eds) (1967) Introduction to Experimental Ecology. Academic Press, London. 401 pp.Google Scholar
  12. Machuka J. and Okeola G. O. (2000) One- and twodimensional gel electrophoresic identification of African yam bean seed proteins. Journal of Agriculture Food and Chemistry 48, 2296–2299.CrossRefGoogle Scholar
  13. McNeill S. and Southwood T. R. E. (1978) The role of nitrogen in the development of insect/plant relationships, pp. 77–78. In Biochemical Aspects of Plant and Animal Coevolution. Proceedings of the Phytochemical Society (Edited by J. B. Harborne). Academic Press, San Francisco, California.Google Scholar
  14. Olatunde G. O. and Odebiyi J. A. (1991) The relationship between total sugar, crude protein and tannic acid contents of cowpea, Vigna unguiculata L. Walp. and varietal resistance to Clavigralla tomentosicollis Stal. (Hemiptera: Coreidae). International Journal of Pest Management 37, 393–396.Google Scholar
  15. Omitogun O.G., Jackai L.E.N. and Thottappilly G. (1999) Isolation of insecticidal lectin-enriched extracts from African yam bean. (Sphenostylis stenocarpa) and other legume species. Entomologia Experimentalis et Applicata 90, 301–311.CrossRefGoogle Scholar
  16. Purseglove J. W. (1968) Tropical Crops Dicotyledons I. John Wiley and Sons, New York. 719 pp.Google Scholar
  17. Quin F. M. (1997) Introduction, pp. ix–xv. In Advances in Cowpea Research (Edited by B. B. Singh, D. R. Raj Mohan, Dashiell K. E. and L. E. N. Jackai). International Institute of Tropical Agriculture (IITA) and Japan International Research Center for Agricultural Science (JIRCAS), Nigeria.Google Scholar
  18. Saxena K. N. (1985) Behavioural basis of plant susceptibility to insects. Insect Science and Its Application 6, 303–313.Google Scholar
  19. Singh S. R. and Allen D. J. (1980) Pests, diseases, resistance and protection in cowpea, pp. 419–443. In Advances in Legume Science (Edited by R. J. Summerfield and A. H. Bunting). Royal Botanic Gardens, Kew and Ministry of Agriculture, Fisheries and Food, London.Google Scholar
  20. Singh S. R. and Taylor T. A. (1978) Pests of grain legumes and their control in Nigeria, pp. 99–111. In Pests of Grain Legumes: Ecology and Control (Edited by S. R. Singh, H. F. van Emden and T. A. Taylor). Academic Press, London.Google Scholar
  21. Smith C. M., Khan Z. R. and Pathak M. D. (Eds) (1994) Techniques for Evaluating Insect Resistance in Crop Plants. CRC/Lewis Press, Boca Raton, Florida. 320 pp.Google Scholar
  22. Tamò M., Ekesi S., Maniania N. K. and Cherry A. (2003) Biological control, a non-obvious component of integrated pest management for cowpea, pp. 295–309. In Biological Control in Integrated Pest Management Systems in Africa (Edited by P. Neuenschwander, C. Borgemeister and J. Langewald). CABI Publishing, Wallingford, Oxon.Google Scholar

Copyright information

© ICIPE 2006

Authors and Affiliations

  1. 1.International Institute of Tropical AgricultureIbadanNigeria
  2. 2.Department of Crop Protection and Environmental Biology, Entomology UnitUniversity of IbadanNigeria
  3. 3.International Institute of Tropical AgricultureBiological Control Centre for AfricaCotonouBénin

Personalised recommendations