Advertisement

International Journal of Tropical Insect Science

, Volume 26, Issue 3, pp 190–196 | Cite as

Development, reproduction and nutritional ecology of Euproctis latifascia (Lepidoptera: Lymantriidae) on artificial diet and a natural host plant, Camellia sinensis

  • Bina Pradhan
  • Mayukh Sarker
  • Ananda MukhopadhyayEmail author
Article

Abstract

Euproctis latifascia Walker is an important pest attacking old leaves of tea bushes and mother leaves of nursery cuttings in Darjeeling foothills, Terai and Northeast India. Laboratory experiments were designed to assess the effect of an artificial diet and a natural diet, i.e. tea leaves, Camellia sinensis, on life history traits like development time, survival and fecundity of E. latifascia. In addition, the maintenance cost as well as the nutritional and production indices were estimated for each substrate (diet) using the gravimetric (dry mass) methods. On the natural (tea leaves) and artificial diets, the total development periods were 78.4 and 68.6 days, fecundity 248.8 and 230.3 eggs/female; in the final caterpillar stage (VI), the relative consumption rates were 0.8 and 0.6, relative growth rates 0.05 and 0.07, maintenance costs 5.1 and 2.9 and production index 0.1 and 0.2, respectively. The fifth instar larvae also showed similar differences in their nutritional indices. Based on these parameters it appears that the artificial diet is more suitable for laboratory rearing of E. latifascia than the natural tea-leaf diet.

Key words

performance Euproctis latifascia Camellia sinensis artificial diet Darjeeling foothills 

Résumé

Euproctis latifascia Walker est un ravageur important des vieilles feuilles de théier et des feuilles de boutures dans les pépinières, au pied des collines de Darjeeling, Terai et du nord est de l’Inde. Des études de laboratoire ont été menées afin de tester l’influence d’un milieu artificiel et d’une alimentation naturelle (i.e. des feuilles de thé Camelia sinensis), sur les caractéristiques biologiques telles que la durée de développement, la survie et la fécondité de E. latifascia. De plus, le coû t de maintenance ainsi que les indices de nutrition et de production ont été estimés pour chaque substrat (régime) à l’aide des méthodes gravimétriques (poids sec). La durée totale du développement est de 78,4 et 68,6 jours, la fécondité de 248,8 et 230,3 oeufs/femelle, chez la larve de dernier stade (VI) le taux de consommation relative est de 0,8 et 0,6, le taux de croissance relatif est de 0,05 et 0,07, le coû t de maintenance de 5,1 et 2,9 et l’indice de production de 0,1 et 0,2, respectivement sur régime naturel et artificiel. Le cinquième stade larvaire montre des différences similaires dans les indices de nutrition. Sur la base de ces paramètres, il apparaît que le milieu artificiel est mieux adapté à l’élevage de E. latifascia au laboratoire que le régime à base de feuilles de thé.

Mots clés

performance Euproctis latifascia Camellia sinensis milieu artificiel le piémont du Darjeeling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdullah M., Sarnthoy O. and Chaeychomsri S. (2000) Comparative study of artificial diet and soybean leaves on growth, development and fecundity of beet armyworm, Spodoptera exigua (Hubner) (Lepidoptera: Noctuidae). Kasetsart Journal (Natural Sciences) 34, 339–344.Google Scholar
  2. Anon. (1994) Pests of Tea in North-East India and Their Control. Memorandum 27. Tea Research Association. Tocklai Experimental Station, Jorhat, Assam, India, pp. 43–44.Google Scholar
  3. AOAC (1990) Official Methods of Analysis, 15th edn. Association of Official Analytical Chemists, Virginia.Google Scholar
  4. Appel H. M. and Martin M. M. (1992) Significance of metabolic load in the evolution of host specificity of Manduca sexta. Ecology 73, 216–228.CrossRefGoogle Scholar
  5. Banerjee T. C. and Haque N. (1985) Influence of host plants on development, fecundity and egg hatch-ability of arctiid moth, Diacrisia casignetum. Entomologia Experimentalis et Applicata 37, 193–198.CrossRefGoogle Scholar
  6. Barbosa P., Cranshaw W. and Greenblatt J. (1981) Influence of food quantity and quality on polymorphic dispersal behaviours in the gypsy moth, Lymantria dispar. Canadian Journal of Zoology 59, 293–296.CrossRefGoogle Scholar
  7. Cookman J. E., Angelo M. J., Slansky F. Jr. and Nation J. L. (1984) Lipid content and fatty acid composition of larva and adults of velvet bean caterpillar, Anticarsia gemmatalis, as affected by larval diet. Journal of Insect Physiology 30, 523–527.CrossRefGoogle Scholar
  8. Dash M. C. (1993) Fundamentals of Ecology. Tata McGraw-Hill Publishing Company Limited, New Delhi, India. 373 pp.Google Scholar
  9. David P. J., Horsburgh R. L. and Holtzman L. I. (1989) Development of Platynota flavedana and P. idaeusalis (Lepidoptera: Tortricidae) at constant temperature in the laboratory. Environmental Entomology 18, 15–18.CrossRefGoogle Scholar
  10. Deb D. C., Paul D. C., Kumar T. P. and Nair B. P. (2000) Role of foliar moisture on consumption and conversion efficiency of dry matter of food into cocoon and shell by the fifth instar larvae of Bombyx mori L. Proceedings of the Zoological Society (Calcutta) 53, 31–40.Google Scholar
  11. Dikeman R. N., Lambremont E. N. and Allen R. S. (1981) Evidence for selective absorption of polyunsaturated fatty acids during digestion in the tobacco budworm, Heliothis virescens F. Journal of Insect Physiology 27, 31–33.CrossRefGoogle Scholar
  12. Embree D. G. (1965) The population dynamics of the winter moth in Nova Scotia, 1954–1962. Memoirs of the Entomological Society of Canada 46, 1–57.Google Scholar
  13. Felland C. M. and Hull L. A. (1992) Integrated ground cover management. An entomological perspective. Pennsylvania Fruit News 72, 91–94.Google Scholar
  14. Gullan P. J. and Cranston P. S. (1994) The Insects: An Outline ofEntomology. Chapman and Hall, London, UK. 491 pp.Google Scholar
  15. Hunter A. F. and Lechowicz M. J. (1992) Foliage quality changes during canopy development of some northern hardwood trees. Oecologia 89, 316–323.CrossRefGoogle Scholar
  16. Krebs C. J. (1978) Ecology, The Experimental Analysis of Distribution and Abundance. Harper International Edition, London. 678 pp.Google Scholar
  17. Larsson S. and Tenow O. (1979) Utilization and dry matter and bioelements in larvae of Neodiprion sertifer Geoffr. (Hym: Dipsionidae) feeding on Scots pine (Pinus sylvertris L.). Oecologia 43, 157–172.CrossRefGoogle Scholar
  18. Lindroth R. L., Klein K. A., Hemming J. D. C. and Feuker A. M. (1997) Variation in temperature and dietary nitrogen affect performance of the gypsy moth (Lymantria dispar L.). Physiological Entomology 22, 55–64.CrossRefGoogle Scholar
  19. Magnoler A. (1970) A wheat germ diet medium for rearing of the gypsy moth, Lymantria dispar L. Entomophaga 15, 401–406.CrossRefGoogle Scholar
  20. Martin M. M. and Van’t Hof H. M. (1988) The cause of reduced growth of Manduca sexta on low water diet increased metabolic cost of nutrient limitation. Journal of Insect Physiology 34, 515–525.CrossRefGoogle Scholar
  21. Mattson W. J. Jr. (1980) Herbivory in relation to plant nitrogen content. Annual Review of Ecology and Systematics 11, 119–161.CrossRefGoogle Scholar
  22. Morris R. F. and Miller C. A. (1954) The development of life tables for the spruce budworm. Canadian Journal of Zoology 32, 283–301.CrossRefGoogle Scholar
  23. Moscardi F., Barfield C. S. and Allen G. E. (1981) Consumption and development of velvet bean caterpillar as influenced by soybean phenology. Environmental Entomology 10, 880–884.CrossRefGoogle Scholar
  24. Mulky M. J. (1993) Chemistry and pharmacology of tea, pp. 83–96. In Tea Culture, Processing and Marketing (Edited by M. J. Mulky and V. S. Sharma). Oxford and IBH Publishing Co., India.Google Scholar
  25. Muthukrishnan J. and Pandian T. J. (1987) Insecta, pp. 373–511. In Animal Energetics (Protozoa through Insecta) (Edited by T. J. Pandian and F. J. Vernberg). vol. 1. Academic Press, New York, USA.CrossRefGoogle Scholar
  26. Panda N. and Khush G. S. (1995) Host Plant Resistance to Insects. Biddles Ltd, Guildford. CABI, UK and International Rice Research Institute, Manila, Philippines. 431 pp.Google Scholar
  27. Petrusewicz K. and Mac Fadyen A. (1970) Productivity of Terrestrial Animals: Principles and Methods. IBP Handbook No. 13. Blackwell Scientific Publications, Oxford, UK.Google Scholar
  28. Schoonhoven L. M., Jermy T. and van Loon J. J. A. (1998) Insect-Plant Biology: From Physiology to Evolution. Chapman & Hall, London, UK. 409 pp.CrossRefGoogle Scholar
  29. Scriber J. M. (1977) Limiting effects of low leaf water content on the nitrogen utilization, energy budget and larval growth of Hyalophora cecropia (Lepidoptera: Saturniidae). Oecologia 28, 269–287.CrossRefGoogle Scholar
  30. Slansky F. Jr. (1992) Allelochemical nutrient interactions in herbivore nutritional ecology, pp. 135–174. In Herbivores: Their Interactions with Secondary Plant Metabolites Vol. II, Evolutionary and Ecological Processes (Edited by G. A. Rosenthal and M. R. Barenbaum). Academic Press, New York, USA.CrossRefGoogle Scholar
  31. Slansky F. and Scriber J. M. (1985) Food consumption and utilization, pp. 87–163. In Comprehensive Insect Physiology Biochemistry and Pharmacology, Vol. 4. Regulation: Digestion, Nutrition, Excretion (Edited by G. A. Kerkut and L. I. Gilbert). Pergamon Press, Oxford, UK.CrossRefGoogle Scholar
  32. Slansky F. Jr. and Wheeler G. S. (1992) Caterpillars compensatory feeding response to diluted nutrients leads to toxic allelochemical dose. Entomologia Experimentalis et Applicata 65, 171–186.CrossRefGoogle Scholar
  33. Waldbauer G. P. (1968) The consumption and utilization of food by insects. Advances in Insect Physiology 5, 229–288.CrossRefGoogle Scholar
  34. Waters D. G. and Barfield C. S. (1989) Larval development and consumption by Anticarsia gemmatalis (Lepidoptera: Noctuidae) fed various legume species. Environmental Entomology 18, 1006–1010.CrossRefGoogle Scholar
  35. Wiegert R. G. and Petersen C. E. (1983) Energy transfer in insects. Annual Review of Entomology 28, 455–486.CrossRefGoogle Scholar

Copyright information

© ICIPE 2006

Authors and Affiliations

  • Bina Pradhan
    • 1
  • Mayukh Sarker
    • 1
  • Ananda Mukhopadhyay
    • 1
    Email author
  1. 1.Entomology Research Unit, Department of Zoology, University of North BengalPO North Bengal UniversityDarjeelingIndia

Personalised recommendations