Advertisement

International Journal of Tropical Insect Science

, Volume 26, Issue 3, pp 176–182 | Cite as

Bemisia tabaci (Homoptera: Aleyrodidae) and Indian cassava mosaic virus transmission

  • B. AntonyEmail author
  • V. S. Lisha
  • M. S. Palaniswami
  • V. S. Sugunan
  • T. Makeshkumar
  • T. J. Henneberry
Article

Abstract

Bemisia tabaci (Gennadius) adults from colonies reared on cassava or sweet potato plants were studied to determine their ability to transmit Indian cassava mosaic virus (ICMV) (Geminiviridae: Begomovirus) from cassava to cassava. Virus acquisition access (feeding) periods (AAP) of 48 h on ICMV-infected cassava leaves and 48-h virus inoculation access (feeding) periods on virus-free cassava seedling leaves were investigated. ICMV was successfully transmitted from cassava to cassava by whiteflies reared on cassava, but not whiteflies reared on sweet potato. Virus-specific primers were designed around conserved regions of the coat protein gene (CP) (771 bases) of the Trivandrum (Tri; GenBank accession number AF423180) isolate and used for virus detection in the whitefly vector after different AAP. The activities of the cyanide detoxifying enzymes rhodanese and β-cyanoalanine synthase in B. tabaci were evaluated and shown to be significantly higher in the cassava-reared whitefly population compared with the sweet potato-reared population suggesting a possible reason for higher mortality of the sweet potato strain feeding on cassava. Mating compatibility studies between cassava and sweet potato colony whiteflies resulted in production of fertile offspring with no evidence for reproductive isolation. Results confirm that only B. tabaci whiteflies reared on cassava transmit ICMV from cassava to cassava in India.

Key words

Bemisia tabaci cassava-associated population sweet potato-associated population Indian cassava mosaic virus rhodanese β-cyanoalanine synthase 

Résumé

Des adultes de Bemisia tabaci (Gennadius) élevés sur des plants de manioc ou de patates douces ont été étudiés afin de déterminer leur capacité de transmission du virus de la mosaı¨que indienne du manioc (ICMV) (Geminiviridae: Begomovirus) du manioc au manioc. Nous avons étudié, pendant 48 h, la contamination de l’insecte à partir de feuilles de manioc contaminées et l’inoculation du virus à des jeunes plants sains de manioc. L’ICMV a été transmis avec succès par l’aleurode du manioc au manioc mais pas à partir de la patate douce. Des amorces spécifiques du virus ont été mises au point sur des régions préservées du gène de la protéine membranaire (CP) (771 bases) d’un isolat de Trivandrum (Tri; référence AF423180 de la banque de gènes) puis utilisées pour la détection du virus chez les aleurodes vecteurs après différents AAP. Les activités enzymatiques de détoxification du cyanure de la rhodanèse et de la β-cyanoalanine synthase chez B. tabaci ont été évaluées. Nous avons montré qu’elles étaient plus élevées chez les populations d’aleurodes élevées sur manioc que sur celles élevées sur patates douces, ce qui pourrait expliquer en partie la plus forte mortalité sur manioc des aleurodes provenant de la patate douce. Des croisements entre les deux souches d’aleurodes ont permis l’obtention de descendants fertiles indiquant l’absence d’isolement reproducteur. Nos résultats confirment que seuls les aleurodes élevés sur manioc peuvent transmettre l’ICMV du manioc au manioc en Inde.

Mots clés

Bemisia tabaci population associée au manioc population associée à la patate douce virus de la mosaï¨que indienne du manioc rhodanese β-cyanoalanine synthase 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdullahi I., Winter S., Atiri G. I. and Thottappilly G. (2003) Molecular characterization of whitefly Bemisia tabaci (Hemiptera: Aleyrodidae) population infesting cassava. Bulletin of Entomological Research 93, 97–106.CrossRefGoogle Scholar
  2. Abraham A. (1956) Tapioca cultivation in India (Farm Bull. No. 17). Indian Council of Agricultural Research, New Delhi. 20 pp.Google Scholar
  3. Beesley S. G., Compton S. G. and David P. J. (1985) Rhodanese in insects. Journal of Chemical Ecology 11, 45–50.CrossRefGoogle Scholar
  4. Blumenthal S. G., Hendrickson Y. P. A. and Conn E. E. (1968) Cyanide metabolism in higher plants III. The biosynthesis of beta-cyanoalanine. Journal of Biological Chemistry 243, 5302–5307.PubMedGoogle Scholar
  5. Brown J. K., Frohlich D. K. and Rosell R. C. (1995) The sweet potato whiteflies: Biotypes of Bemisia tabaci or a species complex? Annual Review of Entomology 40, 511–534.CrossRefGoogle Scholar
  6. Brown J. K., Frohlich D. R., Cooper A. D., Bedford I. D. and Markham P. G. (2000) Genetic analysis of Bemisia (Homoptera: Aleyrodidae) populations by isoelectric focusing electrophoresis. Biochemical Genetics 38, 13–25.CrossRefGoogle Scholar
  7. Burban C., Fishpool L. D. C., Fauquet C., Fargette D. and Thouvenel J. C. (1992) Host-associated biotypes within West African populations of the whitefly Bemisia tabaci (Genn.) (Homoptera: Aleyrodidae). Journal of Applied Entomology 113, 416–423.CrossRefGoogle Scholar
  8. De Barro P. J. and Driver F. (1997) Use of RAPD-PCR to distinguish the B biotype from other biotypes of Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae). Australian Journal of Entomology 36, 149–152.CrossRefGoogle Scholar
  9. Deng D. D., McGrath P. F., Robinson D. I. and Harrison B. D. (1993) Detection and differentiation of whitefly transmitted geminiviruses in plants and vector insects by the polymerase chain reaction with degenerate primers. Annals ofApplied Biology 125, 327–336.CrossRefGoogle Scholar
  10. Dowd P. F., Smith C. M. and Sparks T. C. (1983) Detoxification of plant toxins by insects. Insect Biochemistry 13, 453–468.CrossRefGoogle Scholar
  11. Fauquet C. and Fargette D. D. (1990) African cassava mosaic virus: Etiology and control. Plant Diseases 74, 404–411.CrossRefGoogle Scholar
  12. Fauquet C. M. and Stanley J. (2003) Geminivirus classification and nomenclature: Progress and problems. Annals of Applied Biology 142, 165–189.CrossRefGoogle Scholar
  13. Fishpool L. D. C., Fargette D. D., Colvin J. J., Thouvenet J. C., Burban C. and Fauquet C. M. (1996) Sexual dimorphism of fourth instar whitefly nymphs on cassava in Côte d’Ivoire. Tropical Science 36, 154–158.Google Scholar
  14. Jones D. R. (2003) Plant viruses transmitted by whiteflies. European Journal of Plant Pathology 109, 195–219.CrossRefGoogle Scholar
  15. Legg J. P. (1996) Host associated strains within Ugandan population of the whitefly Bemisia tabaci (Genn.) (Homoptera: Aleyrodidae). Journal of Applied Entomology 120, 523–527.CrossRefGoogle Scholar
  16. Legg J. P., French R., Rogans D., Okao-Ouja G. and Brown J. K. (2002) A distinct Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) genotype cluster is associated with the epidemic of severe cassava mosaic virus disease in Uganda. Molecular Ecology 11, 1219–1229.CrossRefGoogle Scholar
  17. Lisha V. S., Antony B., Palaniswami M. S. and Henneberry T. J. (2003) Bemisia tabaci (Gennadius) (Homoptera: Aleyrodidae) biotypes in India. Journal of Economic Entomology 96, 322–327.CrossRefGoogle Scholar
  18. Mkpong O. E., Yan H., Chism G. and Sayre R. T. (1990) Purification, characterization and localization of linamarase in cassava. Plant Physiology 93, 176–181.CrossRefGoogle Scholar
  19. Ndunguru J., Legg J. P., Aveling T. A. S., Thompson G. A. and Fauquet C. M. (2005) Molecular biodiversity of cassava begomoviruses in Tanzania: Evolution of cassava geminiviruses in Africa and evidence for East Africa being a center of diversity of cassava geminiviruses. Virology Journal 2 (1), 21.CrossRefGoogle Scholar
  20. Palaniswami M. S., Antony B, Lisha V. and Henneberry T. J. (2001) Sweetpotato whitefly ecobiology, host interaction and its natural enemies. Entomon 26, 256–262.Google Scholar
  21. Patil B. L., Rajasubramaniam S., Bagchi C. and Dasgupta I. (2005) Both Indian cassava mosaic virus and Sri Lankan cassava mosaic virus are found in India and exhibit high variability as assessed by PCR-RFLP. Archives of Virology 150, 389–397.CrossRefGoogle Scholar
  22. SPSS (1989) SPSS for Windows. Release 7.5.1. SPSS Inc.Google Scholar
  23. Saunders K., Salim N., Mali V. R., Malathi V. G., Briddon R., Markham P. G. and Stanley J. (2002) Characterization of Sri Lankan cassava mosaic virus and Indian cassava mosaic virus: Evidence for acquisition of a DNA B component by a monopartite begomovirus. Virology 293, 63–74.CrossRefGoogle Scholar
  24. Sorbo B. J. (1955) Rhodanese. Methods in Enzymology 2, 334–337.CrossRefGoogle Scholar
  25. Thresh J. M., Ottim-Nape G. W., Thankappan M. and Muniyappa V. (1998) The mosaic diseases of cassava in Africa and India caused by whitefly-borne geminivirus. Annual Review of Plant Pathology 477, 935–945.Google Scholar
  26. Urbanska A., Leszczynski B., Matok H. and Dixon A. F. G. (2002) Cyanide detoxifying enzymes of bird cherry oat aphid. (Electronic resource) Journal of the Polish Agricultural University (http://www.ejpau.media.pl), 5 (2), 26–28.Google Scholar

Copyright information

© ICIPE 2006

Authors and Affiliations

  • B. Antony
    • 1
    Email author
  • V. S. Lisha
    • 1
  • M. S. Palaniswami
    • 1
  • V. S. Sugunan
    • 2
  • T. Makeshkumar
    • 1
  • T. J. Henneberry
    • 3
  1. 1.Division of Crop ProtectionCentral Tuber Crops Research Institute (Indian Council of Agricultural Research)TrivandrumIndia
  2. 2.Rajiv Gandhi Center for BiotechnologyTrivandrumIndia
  3. 3.Western Cotton Research LaboratoryUSDA/ARSPhoenixUSA

Personalised recommendations