International Journal of Tropical Insect Science

, Volume 25, Issue 3, pp 159–167 | Cite as

Mating interactions between okra and cassava biotypes of Bemisia tabaci (Homoptera: Aleyrodidae) on eggplant

  • Bonaventura Aman Omondi
  • Peter Sseruwagi
  • Daniel Obeng-OfbriEmail author
  • Eric Yirenki Danquah
  • Rosina Abena Kyerematen


Genetic and biological implications from interbreeding the Ghanaian okra and cassava biotypes of Bemisia tabaci (Gennadius), reared on eggplant, were studied in reciprocal crossing plans and crosses compared with parental generations using RAPD-PCR. Interbreeding did not affect fecundity of mated females and survival of F1 progeny. However, the sex ratio of the hybrid progeny was significantly male dominated (by 70% males) compared to purebred progeny of each biotype (>60% females) (P < 0.01). Each biotype was characterized by its own RAPD profiles. Hybrid females had one locus identical to that of both parents, while the males resembled the mother biotype at two loci. The F1 females were oviposited normally and there was a possible restricted gene flow between insects from the two biotypes, sharing the same host plant. However, the biological isolation seems to buttress ecological isolation in nature, hence maintaining the genetic and biological identity of sympatric populations in both biotypes.


Les conséquences des croisements entre deux biotypes de Bemisia tabaci (Gennadius), l’un du gombo et l’autre du manioc, sur le statut génétique et biologique de cet insecte ont été évaluées sur l’aubergine. Les croisements sont comparés aux générations parentales en utilisant la méthode RAPD-PCR. Le croisement n’a pas affecté la fécondité des femelles et la survie de la descendance. Par contre, le sex-ratio des lignées hybrides comprend 70% de mâles contre plus de 60% de femelles chez la lignée pur-sang de chaque biotype (P < 0.01). Chaque biotype présente des profils RAPD-PCR spécifiques. Les descendants femelles présentent un seul locus identique à celui de deux parents, alors que les hybrides mâles ressemblent au biotype maternel pour les deux locus. Les femelles hybrides pondent normalement mais il semble y avoir une possibilité limitée de flux de gènes entre les deux biotypes se développant sur une même plante hôte. Cependant, l’isolement biologique semble conforter l’existence de deux niches écologiques dans la nature, favorisant ainsi le maintient de l’identité génétique et biologique des populations sympatriques des deux biotypes.

Key words

Bemisia tabaci biotype gene flow hybrids fecundity RAPD-PCR 

Mots clés

Bemisia tabaci biotype flux de gène hybrides fécondité RAPD-PCR 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bedford I. D., Markham P. G., Brown J. K. and Rosell R. C. (1994) Geminivirus transmission and biological characterisation of whitefly (Bemisia tabaci) biotypes from different world regions. Annals of Applied Biology 125, 311–325.CrossRefGoogle Scholar
  2. Beitia R., Medina V., Gobbi A., Pascual S. and Bourtzis K. (2003) Wolfeachia-induced cytoplasmic incompatibility in Bemisia tabaci, Abstracts of the 3rd International Bemisia Workshop, March 17-20th 2003 Barcelona.Google Scholar
  3. Bellows T. S., Perring M. T., Gill R. J. and Headrick D. H. (1994) Description of a species of Bemisia (Homoptera: Aleyrodidae). Annals of the Entomological Society of America 87, 195–206.CrossRefGoogle Scholar
  4. Berry S. D., Fondong V. N., Christine R., Rogan D., Fauquet C. M. and Brown J. K. (2004) Molecular evidence for five distinct Bemisia tabaci (Homoptera: Aleyrodidae) geographic haplotypes associated with cassava plants in sub-Saharan Africa. Annals of the Entomological Society of America 97, 852–859.CrossRefGoogle Scholar
  5. Brown J. K., Fröhlich D. R. and Rosell R. C. (1995) The sweetpotato or silverleaf whiteflies: Biotypes of Bemisia tabaci or a species complex? Annual Review of Entomology 40, 511–534.CrossRefGoogle Scholar
  6. Brown J. K., Rogan D. and Legg J. P. (2004) Hybridization between the ‘Invader’ and ‘Local’ Bemisia tabaci haplotypes associated with severe mosaic disease of cassava in East Africa. 2nd European Whitefly Symposium, October 5th-9th 2004 Croatia.Google Scholar
  7. Burban C., Fishpool L. D. C., Fauquet C., Fargette D. and Thouvonel J. C. (1992) Host associated biotypes within the West African populations of the whitefly Bemisia tabaci (Gennadius) (Homoptera: Aleyrodidae). Journal of Applied Entomology 113, 416–423.CrossRefGoogle Scholar
  8. Butler G. D. Jr., Henneberry T. J. and Clayton T. E. (1983) Bemisia tabaci (Homoptera: Aleyrodidae): Development, oviposition, and longevity in relation to temperature. Annals of the Entomological Society of America 76, 310–313.CrossRefGoogle Scholar
  9. Byrne D. N. and Bellows T. S. (1991) Whitefly biology. Annual Review of Entomology 36, 431–457.CrossRefGoogle Scholar
  10. Byrne F. J., Cahill M., Denholm I. and Devonshire A. L. (1995) Biochemical identification of interbreeding between B-biotype and non-B type strains of the tobacco whitefly Bemisia tabaci. Biochemical Genetics 33, 13–23.CrossRefGoogle Scholar
  11. Caprio M. A. and Tabashnik B. E. (1992) Gene flow accelerates local adaptation among finite populations: Simulating the evolution of insecticide resistance. Journal of Economic Entomology 85, 611–620.CrossRefGoogle Scholar
  12. Costa H. S., Brown J. K., Sivasupramaniam S. and Bird J. (1993) Regional distribution, insecticide resistance and reciprocal crosses between the A and B biotypes of Bemisia tabaci. Insect Science and Its Application 14, 255–266.Google Scholar
  13. De Barro P. J. and Driver F. (1997) Use of RAPD-PCR to distinguish the B biotype from other biotypes of Bemisia tabaci (Gennadius) (Homoptera: Aleyrodidae). Australian Journal of Entomology 36, 149–152.CrossRefGoogle Scholar
  14. De Barro P. J. and Hart P. J. (2000) Mating interactions between two biotypes of the whitefly Bemisia tabaci (Homoptera: Aleyrodidae) in Australia. Bulletin of Entomological Research 90, 103–112.CrossRefGoogle Scholar
  15. Diehl S. R. and Bush G. L. (1984) An evolutionary and applied perspective of insect biotypes. Annual Review of Entomology 29, 471–504.CrossRefGoogle Scholar
  16. Drost Y. C., van Lenteren J. C. and van Roermund H. J. W. (1998) Life-history parameters of different biotypes of Bemisia tabaci (Homoptera: Aleyrodidae) in relation to temperature and host plant: a selective review. Bulletin of Entomological Research 88, 219–229.CrossRefGoogle Scholar
  17. Gadelseed A. M. A. (2000) Biotype-host association and distribution of adult Bemisia tabaci (Genn) (Homoptera: Aleyrodidae) on cassava, tomato, garden eggs, okra and coral plant. MPhil. thesis, University of Ghana, Legon, 78 pp.Google Scholar
  18. Genstat (1995) Genstat 5 Release 3.2 for Windows NT® (Software for Statistical Analysis). Lawes Agricultural Trust, Rothamsted Experimental Station, Harpenden, UK.Google Scholar
  19. Horowitz A. R. and Gerling D. (1992) Seasonal variation of sex ratio in Bemisia tabaci on cotton in Israel. Environmental Entomology 21, 556–559.CrossRefGoogle Scholar
  20. Legg J. P. (1996) Host-associated strains within Ugandan populations of the whitefly Bemisia tabaci (Genn) (Homoptera: Aleyrodidae). Journal of Applied Entomology 120, 523–527.CrossRefGoogle Scholar
  21. Li T. Y., Vinson S. B. and Gerling D. (1989) Courtship and mating behaviour of Bemisia tabaci (Homoptera: Aleyrodidae). Environmental Entomology 18, 800–806.CrossRefGoogle Scholar
  22. Maruthi M. N, Colvin J. and Seal S. (2001) Mating compatibility, life history traits and RAPD-PCR variation in Bemisia tabaci associated with cassava mosaic disease pandemic in East Africa. Experimental and Applied Entomology 99, 13–23.CrossRefGoogle Scholar
  23. Mound L. A. and Halsey S. H. (1978) Whiteflies of the World: A Systematic Catalogue of the Aleyrodidae (Homoptera) with Host Plant and Natural Enemy Data. Wiley, New York. 340 pp.Google Scholar
  24. Moya A., Guirao P., Cifuentes D., Beitia E. and Cenis L. (2001) Genetic diversity of Iberian populations of Bemisia tabaci based on random amplified polymorphic DNA - polymerase chain reaction. Molecular Ecology 10, 891–897.CrossRefGoogle Scholar
  25. Nei M. (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 98, 583–590.Google Scholar
  26. Nirgianaki A., Banks G. K., Frohlich D. R., Veneti Z., Briag H. R., Miller T. A., Bedford I. D., Markham P. G., Savakis C. and Bourtzis K. (2003) Wolbachia infections of the whitefly Bemisia tabaci. Current Microbiology 47, 93–101.CrossRefGoogle Scholar
  27. Oliveira M. R. V., Henneberry T. J. and Anderson P. (2001) History, current status and collaborative research projects for Bemisia tabaci. Crop Proection 20, 709–723.CrossRefGoogle Scholar
  28. Omondi A. B. (2003) Characterisation of Bemisia tabaci (Gennadius) (Homoptera: Aleyrodidae) biotypes associated with some selected crops in southern Ghana. M.Phil, thesis, University of Ghana, Legon, 91 pp.Google Scholar
  29. Omondi A. B., Obeng-Ofori D., Danquah E. Y and Offei S. K. (2004) Genetic diversity and oviposition host preference of Bemisia tabaci (Homoptera: Aleyrodidae) populations infesting four crop hosts in Ghana. Journal of the Ghanaian Science Association 6, 105–116.Google Scholar
  30. Omondi A. B., Obeng-Ofori D., Kyerematen R. A. K. and Danquah E. Y (2005) Host preference and suitability of some selected crops for two biotypes of Bemisia tabaci in Ghana. Experimental and Applied Entomology 115, 393–400.CrossRefGoogle Scholar
  31. Perring T. M. (2001) The Bemisia tabaci species complex. Crop Protetion 20, 725–737.CrossRefGoogle Scholar
  32. Perring T. M., Cooper A. D., Rodriguez R. J., Farrar C. A. and Bellows T. S. Jr. (1993) Identification of a whitefly species by genomic and behavioural studies. Science 259, 74–77.CrossRefGoogle Scholar
  33. Ronda M., Adan A., Beitia E, Cifuentes D. and Cenis J. L. (2000) Interbreeding between biotypes of Bemisia tabaci. European Whitefly Studies Newsletter 3, 1.Google Scholar
  34. Ronda M., Adan A., Cifuentes D., Cenis J. L. and Beitia E. (1999) Laboratory evidence of interbreeding biotypes of Bemisia tabaci (Homoptera: Aleyrodidae) present in Spain, pp. 83–84. In Plant Virus Epidemiology: Current Status and Future Prospects. 4th International Plant Virus Epidemiology Symposium, Aguaducle (Almeria) Spain, 11–16 April 1999.Google Scholar
  35. Stevens L., Giordano R. and Fialho R. E (2001) Malekilling nematode infections, bacteriophage infection, and virulence of cytoplasmic bacteria in the genus Wolbachia. Annual Review of Ecology and Systematics 32, 519–545.CrossRefGoogle Scholar
  36. Takahata N. (1983) Gene identity and genetic differentiation of populations in the finite island model. Genetics 104, 497–512.PubMedPubMedCentralGoogle Scholar
  37. Zchori-Fein E., Gottlieb Y, Kelly S. E., Brown J. K, Wilson J. M., Karr T. L. and Hunter M. S. (2001) A newly discovered bacterium associated with parthenogenesis and change in host selection behaviour in parasitoid wasps. Proceedings of the National Academy of Science of the United States of America 98, 12555–12560.CrossRefGoogle Scholar

Copyright information

© ICIPE 2005

Authors and Affiliations

  • Bonaventura Aman Omondi
    • 1
  • Peter Sseruwagi
    • 2
  • Daniel Obeng-Ofbri
    • 1
    • 3
    Email author
  • Eric Yirenki Danquah
    • 3
  • Rosina Abena Kyerematen
    • 1
    • 4
  1. 1.African Regional Postgraduate Programme in Insect ScienceUniversity of GhanaLegon, AccraGhana
  2. 2.International Institute of Tropical Agriculture, Eastern and Southern Africa Regional CentreKampalaUganda
  3. 3.Crop Sciences DepartmentUniversity of GhanaLegon, AccraGhana
  4. 4.Zoology DepartmentUniversity of GhanaLegon, AccraGhana

Personalised recommendations