International Journal of Tropical Insect Science

, Volume 24, Issue 3, pp 236–241 | Cite as

Stage- and sex-dependent changes in the lipid profile of Dysdercus koenigii (Heteroptera: Pyrrhocoridae) during development

  • Archana Mishra
  • A. K. Singh
  • Dinesh KumarEmail author


Lipids were extracted from the plasma and gonads of fourth and fifth instars and adults of Dysdercus koenigii (Heteroptera: Pyrrhocoridae). Thin layer chromatography of the extracts revealed fractions of free fatty acids (FFA), monoglycerides (MG), diglycerides (DG), triglycerides (TG), phospholipids (PL), free cholesterol (FC) and esterified cholesterol (EC). There were distinct differences in the lipid profiles within sexes for both tissues during development. Phospholipid from female plasma showed significant fluctuation during development, while that from males remained constant. In female gonads, PL levels increased significantly from the fouth instar to the fifth instar. Monoglycerides were detected only in adult male plasma and adult female gonads, at very low levels. Plasma DG in males was found to increase significantly during development. Maximum gonadal DG was recorded in male fourth instars and female fifth instars. Triglycerides in female plasma declined from the fourth instar to the adult stage. In contrast, TG in gonads increased significantly in the fifth instar of both sexes. Plasma FFA of both sexes fluctuated during development. Free cholesterol was detected only in adult male plasma. Plasma EC increased from the fourth instar to the adult stage in males, and it was highest in gonads of fifth instars of both sexes.

Key words

Dysdercus koenigii development lipid profile thin layer chromatography 

Mots clés

Dysdercus koenigii développement profil lipidique TLC 


Des lipides ont été extraits du plasma et des gonades des quatrième et cinquième stades juvéniles et des adultes de Dysdercus koenigii (Heteroptera: Pyrrhocoridae). La Chromatographie sur couche mince des extraits révèle des fractions d’acides gras libres (FFA), des monoglycérides (MG) des diglycérides (DG), des triglycérides (TG), des phospholipides (PL), du cholestérol libre (FC) et du cholestérol esthérifié (EC). Il y a des différences de profils lipidiques selon le sexe pour les deux tissus au cours du développement. Les taux de PL du plasma des femelles présentent des variations significatives pendant le développement alors que ceux des mâles restent constants. Dans les gonades femelles, les taux de PL augmentent significativement entre le quatrième et le cinquième stade juvénile. Les MG ont été détectés uniquement dans le plasma des mâles adultes et dans les gonades femelles à de très faibles taux. Les DG du plasma des mâles augmentent significativement pendant le développement. Les taux maxima de DG dans les gonades ont été trouvés chez les mâles juvéniles de quatrième et cinquième stade. Les taux de TG du plasma des femelles diminuent entre le quatrième stade juvénile et l’adulte. A l’inverse, le taux de TG des gonades augmentent significativement chez le cinquième stade juvénile dans les deux sexes. Les taux de FFA du plasma des deux sexes varient au cours du développement. Les FC sont détectés uniquement dans le plasma des mâles adultes. Le taux de EC du plasma augmente entre le quatrième stade juvénile et les adultes chez les mâles et il est plus élevé dans les gonades du cinquième stade juvénile chez les deux sexes.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Beenakkers A. M. and Gilbert L. I. (1968) The fatty acid composition of fat body and haemolymph in Hyalophora cecropia and its relation to lipid release. J. Insect Physiol. 14, 481–494.CrossRefGoogle Scholar
  2. Beenakkers A. M., Vander-Horst D. J. and Van Marrewijk W. J. A. (1985) Insect lipids and lipoproteins and their role in physiological processes. Prog. Lipid Res. 24, 19–67.CrossRefGoogle Scholar
  3. Casida J. E., Beck S. D. and Cole M. J. (1957) Sterol metabolism in the American cockroach. J. Biol. Chem. 224, 365–371.PubMedGoogle Scholar
  4. Chapman D. (1975) Lipid dynamics in cell membranes, pp. 13–120. In Cell Membranes: Biochemistry, Cell Biology and Pathology (Edited by G. Weissmann and R. Clairborne). H.P. Publishing, New York.Google Scholar
  5. Chino H. (1985) Lipid transport: biochemistry of haemolymph lipophorin, pp. 115–136. In Comprehensive Insect Physiology, Biochemistry and Pharmacology (Edited by G. A. Kerkut and L. I. Gilbert). Vol. 10. Pergamon Press, Oxford.Google Scholar
  6. Cmelik S. H. W. (1969) The neutral lipids from various organs of the termite Macrotermes goliath. J. Insect Physiol. 15, 839–849.CrossRefGoogle Scholar
  7. Dutkowski A. and Ziajka B. (1970) Sexual dimorphism in the content of lipid in fat body of Galleria melonella L. (Lepidoptera) and utilization of these lipids by developing oocytes for vitellogenesis. Zool. Polon. 20, 55–70.Google Scholar
  8. Fast P. G. (1964) Insect lipids: a review. Mem. Ent. Soc. Can. 37, 1–50.Google Scholar
  9. Folch J., Lees M. and Sloane-Stanley G. H. (1957) A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226, 497–509.PubMedGoogle Scholar
  10. Freeman C. P. and West D. (1966) Complete separation of lipids classes on a single thin layer plate. J. Lipid Res. 7, 324–327.PubMedGoogle Scholar
  11. Fulton R. A. and Romney V. E. (1940) The chloroform soluble components of beet leafhoppers as an indication of the distance they move in spring. J. Agric. Res. 61, 737–743.Google Scholar
  12. Gilbert L. I. (1967) Lipid metabolism and functions in insects, pp. 69–211. In Advances in Insect Physiology (Edited by J. W. L. Beament, J. E. Treherne and V. B. Wigglesworth). Vol. 4. Academic Press, London and New York.CrossRefGoogle Scholar
  13. Hardie J. and Lees A. D. (1985) Endocrine control of polymorphism and polyphenism, pp. 441–490. In Comprehensive Insect Physiology, Biochemistry and Pharmacology (Edited by G. A. Kerkut and L. I. Gilbert). Vol. 8. Pergamon Press, Oxford.Google Scholar
  14. Kerkut G. A. and Gilbert L. I. (Eds) (1985) Comprehensive Insect Physiology, Biochemistry and Pharmacology, Vol. 10. Pergamon Press, Oxford.Google Scholar
  15. Kinsella J. E. (1966) General metabolism of the hexapod embryo with particular reference to lipids. Comp. Biochem. Physiol. 19, 291–304.CrossRefGoogle Scholar
  16. Koolman J. (Ed.) (1989) Ecdysone: From Chemistry to Mode of Action. George Thieme Verlag, Stuttgart, New York.Google Scholar
  17. Lal B. and Singh T. P. (1987) Changes in tissue lipid levels in the freshwater catfish Clarias batrachus associated with the reproductive cycle. Fish Physiol. Biochem. 3, 191–201.CrossRefGoogle Scholar
  18. Lee R. F, Polthemus J. T. and Cheng L. (1975) Lipids of the water strider Geris remigi Say (Hemiptera: Gerridae) seasonal and developmental variations. Comp. Biochem. Physiol. 51B, 451–456.Google Scholar
  19. Marzo A., Ghirarch P., Serdini D. and Meroni D. (1971) Simplified measurement of monoglycerides, diglycerids, triglycerides and fatty acids in biological samples. Clin. Chem. 17, 145–147.PubMedGoogle Scholar
  20. Nagl J. F. (1980) Theory of the main lipid bilayer phase transition. Ann Rev. Phys. Chem. 31, 157–195.CrossRefGoogle Scholar
  21. Nakasone S. and Ito T. (1967) Fatty acid composition of the silkworm Bombyx mori. J. Insect Physiol. 13, 1237–1246.CrossRefGoogle Scholar
  22. Robbins W. E. (1963) Studies on the utilization, metabolism and function of sterols in the house fly, Musca domestica, pp. 269–280. In Radiation and Radio Isotopes Applied to Insects of Agricultural Importance. IAEA, Vienna.Google Scholar
  23. Rockstein M. (Ed.) (1978) Biochemistry of Insects. Academic Press, New York, London.Google Scholar
  24. Rup P. J., Gill R. K. and Kalra P. K. (1992) Phospholipid during the development of phasephenism in Lipaphis erysimi (Kalt.) (Hemiptera: Aphididae). Entomon 17, 29–34.Google Scholar
  25. Ryan R. O. (1990) Dynamics in insect lipophorin metabolism. J. Lipid Res. 31, 1725–1739.PubMedGoogle Scholar
  26. Scoggin J. K. and Tauber O. E. (1950) Survey of literature on insect lipids. Iowa State College J. Sci. 25, 99–124.Google Scholar
  27. Shapiro J. P., Law J. H. and Wells M. A. (1988) Lipid transport in insects. Annu. Rev. Entomol. 33, 297–318.CrossRefGoogle Scholar
  28. Shelby K. S. and Chippendale G. M. (1990) In vitro synthesis and secretion of lipophorin by the fat body of nondiapause and prediapause larvae of the south-western corn borer Diatraea grandiosella. Insect Biochem. 20, 517–522.CrossRefGoogle Scholar
  29. Sidhu D. S., Kumar N. and Dhillon S. S. (1984) Phospholipid during the developmental stages of Athalia proxmia (A. Lugens) (Hymenoptera: Tenthredinidae). Acta Entomol. Bohemia 81, 411–415.Google Scholar
  30. Singh A. K. and Singh T. P. (1979) Seasonal fluctuation in total lipid and cholesterol content in ovary, liver and blood serum in relation to annual sexual cycle in Heteropneustes fossilis (Bloch). Endocrinologie 73, 47–54.Google Scholar
  31. Thomas K. K. (1974) Lipid composition of the fat body and haemolymph and its relation to lipid release in Oncopeltus fasciatus. J. Insect Physiol. 20, 845–858.CrossRefGoogle Scholar
  32. Turunen S. (1975) Absorption and transport of dietary lipid in Pieris brassicae. J. Insect Physiol. 21, 1521–1529.CrossRefGoogle Scholar
  33. Vander-Horst D. J. (1990) Lipid transport function of lipoproteins in flying insects. Biochem. Biophys. Acta 1047, 195–211.CrossRefGoogle Scholar
  34. Venkatesh K., Lenz C. J., Bergman D. K. and Chippendale G. M. (1987) Synthesis and release of lipophorin in larvae of the south western corn borer Diatraea grandiosella; an in vitro study. Insect Biochem. 17, 1173–1180.CrossRefGoogle Scholar
  35. Venugopal K. J. and Kumar D. (1999) Vitellins and vitelllogensis of Dysdercus koenigii (Heteroptera: Pyrrhocoridae) — identification, purification and temporal pattern. Comp. Biochem. Physiol. B. 124, 215–223.CrossRefGoogle Scholar
  36. Venugopal K. J., Kumar D. and Singh A. K. (1994) Developmental studies on protein from haemolymph, fat body and ovary of the phytophagous bug Dysdercus koenigii (Heteroptera: Pyrrhocoridae). Biochem. Archi. 10, 297–302.Google Scholar
  37. Wang C. M. and Patton R. L. (1969) Lipids in the haemolymph of the cricket Acheta domesticus. J. Insect Physiol. 15, 851–860.CrossRefGoogle Scholar
  38. Weers P. M. M., Vander-Horst D. J., Van Marrewijk W. J. A., Vanden Eijnden M., Van Doom J. M. and Beenakkers A.M. (1992) Biosynthesis and secretion of insect lipoproteins. J. Lipid Res. 33, 485–491.PubMedGoogle Scholar
  39. Wlodawer P. and Wisniewsak A. (1965) Lipids in the haemolymph of the wax moth larvae during starvation. J. Insect Physiol. 11, 11–20.CrossRefGoogle Scholar
  40. Zaidi A. S. and Ansari H. J. (1985) Phospholipid concentration in the fat body and gonad of the red cotton bug Dysdercus cingulatus. Fabr. (Heteroptera: Pyrrhocoridae) in relation to growth, metamorphosis and reproduction. Bull. Zool. 52, 305–308.CrossRefGoogle Scholar

Copyright information

© ICIPE 2004

Authors and Affiliations

  1. 1.Department of ZoologyBanaras Hindu UniversityVaranansiIndia

Personalised recommendations