Advertisement

International Journal of Tropical Insect Science

, Volume 24, Issue 3, pp 207–212 | Cite as

Influence of indoor microclimate and diet on survival of Anopheles gambiae s.s. (Diptera: Culicidae) in village house conditions in western Kenya

  • Bernard A. OkechEmail author
  • Louis C. Gouagna
  • Bart G. J. Knols
  • Ephantus W. Kabiru
  • Gerry F. Killeen
  • John C. Beier
  • Guiyun Yan
  • John I. Githure
Article

Abstract

The survival of female Anopheles gambiae s.s. mosquitoes inside two village house types (grass-thatched and iron-roofed) was studied in relation to diet and ambient indoor microclimatic conditions. Two batches of 20–30, 1-day-old laboratory-bred mosquitoes were maintained inside cages in the grass-thatched (n = 2) and iron-roofed (n = 2) houses and fed daily, one group on 10% glucose and the other on human blood. Throughout the experiments, indoor temperature and relative humidity of the houses were recorded, and mortality of mosquitoes monitored daily until all had died. The experiments were replicated thrice. There was no significant variation in the overall mean temperature (P = 0.93) or relative humidity profiles (P = 0.099) between the two house types, although the iron-roofed houses recorded higher temperature peaks. A Kaplan-Meier survival analysis showed that the mean survival times of mosquitoes were 8 and 10 days in the two grass-thatched huts and 7 and 10 days in the two iron-roof houses for mosquitoes feeding on blood and sugar meals, respectively. The mean survival times of mosquitoes maintained inside similar house types differed only due to diet. In the proportionality of hazards model (Cox regression), the dietary regimes significantly influenced the probability of survival (P = 0.0001), with mosquitoes surviving longer on sugar meals than on blood. Microclimatic factors inside houses also significantly influenced mosquito survival. Although higher peak temperatures were recorded in corrugated iron-roofed houses, the survival of the mosquitoes resting in them did not differ significantly from that in grass-thatched houses. However, the impact of these temperatures on the development of malaria parasites inside the vector needs to be investigated.

Key words

mosquito indoor survival house construction material Anopheles gambiae indoor microclimate western Kenya 

Mots clés

moustique survie à l’intérieur matériel de construction Anopheles gambiae microclimat intérieur Ouest du Kenya 

Résumé

La survie des femelles d’Anopheles gambiae s.s à l’intérieur de deux types de maisons villageoises (toiture en chaume ou en tôles) a été étudiée en relation avec l’alimentation et les conditions microclimatiques rencontrées à l’intérieur. Deux groupes de 20–30 femelles obtenues en conditions de laboratoire, âgées d’1 jour, ont été maintenus en cages dans les maisons à toiture en chaumes (n = 2) et dans des maisons à toiture en tôles (n = 2); ils ont été nourris chaque jour, un groupe avec du glucose à 10% et l’autre avec du sang humain. Pendant toute la durée de l’expérience, les températures et les humidités relatives intérieures sont enregistrées et les moustiques sont observés chaque jour jusqu’à leur mort. L’expérience est répétée trois fois. Il n’y a pas de différence significative entre la température moyenne (P = 0,93) et l’humidité relative moyenne (P = 0,099) des deux types de maisons, bien que les maisons avec la toiture en tôles enregistrent des pics de températures plus élevées. Une analyse de survie selon la méthode de Kaplan-Meier montre que la durée moyenne de survie des moustiques est de 8 et 10 jours dans les deux maisons à toiture en chaume et de 7 et 10 jours dans les deux maisons à toiture en tôles pour les moustiques se nourrissant de sang et d’eau sucrée respectivement. La différence de durée moyenne de survie des moustiques maintenues dans des maisons identiques est due uniquement au régime alimentaire. L’analyse par régression de Cox montre que le régime alimentaire influence significativement la probabilité de survie (P = 0,0001), avec des moustiques survivants plus longtemps avec des repas de sucre qu’avec des repas de sang. Les facteurs microclimatiques à l’intérieur des maisons influencent également significativement la survie des moustiques. Bien que des températures plus élevées aient été enregistrées dans les maisons à toiture en tôles, la survie des moustiques n’est pas significativement différentes de celle observée dans les maisons à toiture en chaume. Cependant, l’influence de ces températures sur le développement du parasite de la malaria dans le vecteur doit être étudiée.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beier J. C. (1996) Frequent blood-feeding and restrictive sugar-feeding behavior enhance the malaria vector potential of Anopheles gambiae s.l. and An. funestus (Diptera: Culicidae) in western Kenya. J. Med. Entomol. 33, 613–618.CrossRefGoogle Scholar
  2. Benedict M. Q. (1997) In Molecular Biology of Insect Disease Vectors: A Methods Manual (Edited by J. M. Crampton, C. B. Beard and C. Louis). Chapman and Hall.Google Scholar
  3. Briegel H. and Horler E. (1993) Multiple blood meals as a reproductive strategy in Anopheles (Diptera: Culicidae). J. Med. Entomol. 30, 975–985.CrossRefGoogle Scholar
  4. Clements A. N. (1963) The Physiology of Mosquitoes. Macmillan, New York.Google Scholar
  5. Coluzzi M. (1984) Heterogeneities of malaria vectorial system in the tropical Africa and their significance in malaria epidemiology and control. Bull. W.H.O. 62, 107–113.PubMedGoogle Scholar
  6. Copeland R. S. (1994) Anopheles mosquitoes: parasite vector interactions, host vector interactions and population management. In Proceedings of the 3rd International Conference on Tropical Entomology (Edited by R. K. Saini). Nairobi, Kenya.Google Scholar
  7. Craig M. H., Snow R. W. and le Sueur D. (1999) A climate-based distribution model of malaria transmission in sub-Saharan Africa. Parasitol. Today 15, 105–111.CrossRefGoogle Scholar
  8. Gamage-Mendis A. C., Carter R., Mendis C., De Zoysa A. P., Herath P. R. and Mendis K. N. (1991) Clustering of malaria infections within an endemic population: risk of malaria associated with the type of housing construction. Am. J. Trop. Med. Hyg. 45, 77–85.CrossRefGoogle Scholar
  9. Githeko A. K., Service M. W., Mbogo C. M., Atieli F. K. and Juma F. O. (1994) Origin of blood meals in indoor and outdoor resting malaria vectors in western Kenya. Acta Trop. 58, 307–316.CrossRefGoogle Scholar
  10. Lindsay S. W. and Snow R. W. (1988) The trouble with eaves; house entry by vectors of malaria. Trans. R. Soc. Trop. Med. Hyg. 82, 645–646.CrossRefGoogle Scholar
  11. Minakawa N., Githure J. I., Beier J. C. and Yan G. (2001) Anopheline mosquito survival strategies during the dry period in western Kenya. J. Med. Entomol. 38, 388–392.CrossRefGoogle Scholar
  12. Minakawa N., Mutero C. M., Githure J. I., Beier J. C. and Yan G. (1999) Spatial distribution and habitat characterization of anopheline mosquito larvae in Western Kenya. Am. J. Trop. Med. Hyg. 61, 1010–1016.CrossRefGoogle Scholar
  13. Minakawa N., Seda P. and Yan G. (2002) Influence of host and larval habitat distribution on the abundance of African malaria vectors in western Kenya. Am. J. Trop. Med. Hyg. 67, 32–38.CrossRefGoogle Scholar
  14. Mutero C. M., Ouma J. H., Agak B. K., Wanderi J. A. and Copeland R. S. (1998) Malaria prevalence and use of self-protection measures against mosquitoes in Suba District, Kenya. East Afr. Med. J. 75, 11–15.PubMedGoogle Scholar
  15. Okech B. A., Gouagna L. C., Killeen G. F., Knols B. G., Kabiru E. W., Beier J. C., Yan G. and Githure J. I. (2003) Influence of sugar availability and indoor microclimate on survival of Anopheles gambiae (Diptera: Culicidae) under semifield conditions in western Kenya. J. Med. Entomol. 40, 657–663.CrossRefGoogle Scholar
  16. Omer S. M. and Cloudsley-Thompson J. L. (1970) Survival of female Anopheles gambiae Giles through nine month dry season in Sudan. Bull. WHO 42, 319–330.PubMedGoogle Scholar
  17. Ribeiro J. M. C., Seulu F., Abose T., Kidane G. and Teklehaimanot A. (1996) Temporal and spatial distribution of anopheline mosquitoes in an Ethiopian village: implications for malaria control strategies. Bull. WHO 74, 299–305.PubMedGoogle Scholar
  18. Service M. W. (1973) Identification of predators of Anopheles gambiae resting in huts, by the precipitin test. Trans. R. Soc. Trop. Med. Hyg. 67, 33–44.CrossRefGoogle Scholar
  19. Shililu J., Mbogo C., Mutero C., Gunter J., Swalm C., Regens J., Keating J., Yan G., Githure J. and Beier J. (2003) Spatial distribution of Anopheles gambiae and Anopheles funestus and malaria transmission in Suba District, western Kenya. Insect Sci. Applic. 23, 187–196.Google Scholar
  20. Smith T., Charlwood J. D., Takken W., Tanner M. and Spiegelhalter D. J. (1995) Mapping densities of malaria vectors within a single village. Acta Trop. 59, 1–18.CrossRefGoogle Scholar
  21. White G. B. (1974) Anopheles gambiae complex and disease transmission in Africa. Trans. R. Soc. Trop. Med. Hyg. 68, 278–301.CrossRefGoogle Scholar

Copyright information

© ICIPE 2004

Authors and Affiliations

  • Bernard A. Okech
    • 1
    • 2
    • 3
    Email author
  • Louis C. Gouagna
    • 1
  • Bart G. J. Knols
    • 1
  • Ephantus W. Kabiru
    • 3
  • Gerry F. Killeen
    • 1
  • John C. Beier
    • 5
  • Guiyun Yan
    • 4
  • John I. Githure
    • 1
  1. 1.International Centre of Insect Physiology and Ecology (ICIPE)NairobiKenya
  2. 2.Kenya Medical Research InstituteNairobiKenya
  3. 3.Department of ZoologyKenyatta UniversityNairobiKenya
  4. 4.Department of Biological SciencesState University of New YorkBuffaloUSA
  5. 5.Department of Epidemiology and Public HealthUniversity of Miami School of MedicineMiamiUSA

Personalised recommendations