Advertisement

Mammalian Biology

, Volume 69, Issue 6, pp 375–383 | Cite as

The composition of African lion (Panthern leo) milk collected a few days postpartum

  • H. O. De WaalEmail author
  • G. Osthoff
  • A. Hugo
  • J. Myburgh
  • P. Botes
Original investigation

Abstract

There is very Little information on the composition of lion milk. Milk was obtained from all four teats of two African lionesses (Panthern leo) while they were temporarily immobilized.; the first lioness was 40 hours postpartum and the second lioness was 10 days postpartum. The lion’s milk obtained from the two lionesses in this study contained less solids than reported in literature. The milk of the two females contained, respectively, 192.2 and 166.9 g dry matter/kg milk.; 60.2 and 84.6 g protein/kg milk.; 113.6 and 136.9 g fat/kg milk.; and 68.6 and 77.9 g fat free dry matter/kg milk. Carbohydrate content, analysed only for the first lioness, was 26.5 g lactose/kg milk. These values are much lower than those cited in literature. Electrophoresis and identification of protein bands showed a similar pattern of proteins as seen in cow’s milk, but with caseins of less negative charge and whey proteins of smaller molecular size. The milk fat content of the second lioness was higher and varied considerably more among teats. The lipid fraction of lion’s milk is characterized by a high content of saturated (palmitic and stearic) and mono-unsaturated (palmi-toleic and oleic) fatty acids. Regarding fatty acid composition, lion milk closely resembles human milk. Animal fat plays an important role in the nutrition of African lions. The high fat content of lion milk suggests that the dependency by large predators such as lions on dietary fat is present from birth.

Key words

Panthern leo African lion milk composition 

Die Zusammensetzung der Milch von afrikanischen Löwen (Panthern leo) einige Tage postpartum

Zusammenfassung

Milch wurde von allen vier Zitzen zweier afrikanischer Löwinnen (Panthern leo) entnommen, während sie kurzfristig immobilisiert waren. Die erste Löwin war 40 Stunden postpartum und die zweite 10 Tage postpartum. Die Milch der beiden Löwinnen in dieser Untersuchung enthielt weniger Trok-kenmasse als in der Literatur beschrieben. Die Milch der beiden Löwinnen enthielt unterschiedlich 192,2 bzw. 166,9 g Trockenmasse/kg Milch.; 60,2 bzw. 84,6 g Protein/kg Milch.; 113,6 bzw. 136,9 g Fett/kg Milch.; und 68,6 bzw. 77,9 g fettfreie Trockenmasse/kg Milch. Der Kohlen hydratge-halt war nur für Milch der ersten Löwin bestimmt als 26,5 g Laktose/kg Milch. Diese Werte sind generell wesentlich niedriger als bisher beschrieben. Elektrophorese und Identifizierung der Proteinbanden wiesen ein gleiches Muster auf wie Proteine aus Kuhmilch, aber Kaseine trugen eine geringere negative Ladung und Molkeproteine hatten geringere Molekulargewichte. Der Milchfettgehalt der zweiten Löwin war höher mit mehr Variation zwischen den Zitzen. Das Fett der Löwenmilch ist charakterisiert durch einen hohen Gehalt an gesättigten (Palmitat und Stearat) und mono-unge-sättigten (Palmitoleat und Oleat) Fettsäuren. In Fettsäurezusammensetzung liegt menschliche Milch der Löwenmilch am nächsten. Tierisches Fett spielt eine wichtige Rolle in der Nahrung der afrikanischen Löwen. Der hohe Fettgehalt der Löwenmilch deutet an, daß die Abhängigkeit von diätischem Fett bei großen Predatoren schon von der Geburt anwesend ist.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alais, C.; Linden, G. L. (1991): Milk and dairy products. In: Food Biochemistry. New York: Ellis Horwood. Pp. 148–173.CrossRefGoogle Scholar
  2. Andrews, A. T. (1983): Proteinases in normal bovine milk and their action on caseins. J. Dairy Res 50, 45–55.CrossRefGoogle Scholar
  3. AOAC (2000): Official Methods of Analysis, 17th edn. Virginia: Association of Official Analytical Chemists.Google Scholar
  4. Ben Shaul, D. M. (1962): The composition of the milk of wild animals. Int. Zoo Yb. 4, 333–342.CrossRefGoogle Scholar
  5. De Waal, H. O. (1990): Formulering van ’n melk-dieet vir leeuwelpies (Formulating a milk diet for lion cubs). Animal Science 29, 5–6.Google Scholar
  6. Eloff, F. C. (1980): Cub mortality in the Kalahari lion Panthern leo vernayi (Roberts, 1948). Koedoe 23, 163–170.CrossRefGoogle Scholar
  7. Eloff, F. C. (1999): Jagters van die duine. Die storie van die Kalaharileeu. (Hunters of the dunes. The Story of the Kalahari Lion.) Hatfield, Pretoria: J. L. van Schaik Publishers.Google Scholar
  8. Folch, I.; Lees, M.; Sloane-Stanley, G. H. (1957): A simple method for the isolation and purification of total lipids from animal tissue. J. Biol. Chem. 226, 497–509.PubMedGoogle Scholar
  9. Green, J. K. (1991): Wild Cat Species of the World. Plymouth: Basset Publications.Google Scholar
  10. Greenfield, S.; Jones, I. L. L.; Berry, C. T. (1964): High pressure plasmas as spectroscopic emission sources. Analyst 89, 713–720.CrossRefGoogle Scholar
  11. Harvey, C.; Kat, P. (2000): Prides. The Lions of Moremi. Rivonia, South Africa: Southern Book Publishers.Google Scholar
  12. Jensen, R. G. (1995): Milk Composition. Wisconsin: Academic Press.Google Scholar
  13. Lien, E. L.; Boyle, F. G.; Yuhas, R.; Tomarelli, R. M.; Quinlan, P. (1997): The effect of triglyceride positional distribution on fatty acid absorption in rats. J. Pedia. Gastr. Nutr. 25, 167–174.CrossRefGoogle Scholar
  14. Lucas, A.; Quinlan, P.; Abrams, S.; Ryan, S.; Meah, S.; Lucas, P. J. (1997): Randomised controlled trial of a synthetic triglyceride milk formula for preterm infants. Archives of Disease in Childhood. Fetal and Neonatal Edition 77, F179–F184.CrossRefGoogle Scholar
  15. Lyall-Watson, V. (1962): International survey of hand-rearing techniques and animal milk analyses. In: The International Zoo Yearbook Vol IV. Ed. by Caroline Jarvis and Desmond Morris. London: The Zoological Society of London, Hutchinson.Google Scholar
  16. Mcdonald, P.; Edwards, R. A.; Greenhalgh, J. F D.; Morgan, C. A. (1995): Animal Nutrition. 5th ed. Longman Singapore Publishers (Pty) Ltd.Google Scholar
  17. Oftedal, O. T. (1984): Milk composition, milk yield and energy output at peak lactation: a comparative review. Symp. Zool. Soc. Lond. 51, 33–85.Google Scholar
  18. Schaller, G. B. (1972): The Serengeti Lion: a study of predator-prey relations. Chicago: University of Chicago Press.Google Scholar
  19. Schmidt, G. H. (1971): The Biology of Lactation San Francisco: W.H. Freeman and Company.Google Scholar
  20. Slover, H. T.; Lanza, E. (1979): Quantitative analysis of food fatty acids by capillary gas chromatography. J. Am. Oil Chem. Soc. 56, 933–943.CrossRefGoogle Scholar
  21. Smith, V. R. (1959): Physiology of Lactation. 5th ed. Ames, Iowa: Iowa State University Press.Google Scholar
  22. Smuts, G. L.; Robinson, G. A.; Whyte, I. J. (1980): Comparative growth of wild male and female lions (Panthera leo). J. Zool. (London) 190, 365–373.CrossRefGoogle Scholar
  23. Wilbey, R. A. (1991): Yellow fats. In: Analysis of Oilseeds, Fats and Fatty Foods Ed. by J. B. Rossell and J. L. R. Pritchard. London, New York: Elsevier Applied Science. Pp. 395–440.Google Scholar

Copyright information

© Deutsche Gesellschaft für Säugetierkunde 2004

Authors and Affiliations

  • H. O. De Waal
    • 1
    Email author
  • G. Osthoff
    • 2
  • A. Hugo
    • 2
  • J. Myburgh
    • 2
  • P. Botes
    • 2
  1. 1.Department of Animal, Wildlife and Grassland SciencesAfrican Large Predator Research UnitSouth Africa
  2. 2.Department of Microbial, Biochemical and Food Biotechnology, Faculty of Natural and Agricultural SciencesUniversity of the Free StateBloemfonteinSouth Africa

Personalised recommendations