Advertisement

Mammalian Biology

, Volume 68, Issue 5, pp 299–316 | Cite as

A new sibling species of Taterillus (Muridae, Gerbillinae) from West Africa

  • G. DobignyEmail author
  • L. Granjon
  • V. Aniskin
  • K. Ba
  • V. Volobouev
Original investigation

Abstract

Modern systematics can now rely on powerful discriminating techniques, such as cytogenetics. As a result, a growing number of sibling species has been described in a variety of taxa. Among mammals, this is particularly true in rodents. Here, we describe a new species of Taterillus (Rodentia, Gerbillinae), namely Taterillus tranieri sp. n. based on specimens from Mali and Mauritania. Neither external and cranial morphology nor morphometrics taking size and shape into account could lead to a satisfying diagnosis of this species relative to the four West African species known in this genus. Conversely, this new species could be characterized by a very specific karyotype (with 2N = 14/15, the lowest diploid number in gerbilline rodents, NFa = 22-24) differing from that of its closest relative Taterillus petteri (2N = 18/19, NFa = 28) by two tandem translocations accompanied by 2 centromere activations/desactivations, one non reciprocal translocation, and three pericentric inversions. In addition to providing non-ambiguous arguments in favour of the description of this taxon as a new biological species, these chromosomal results confirm the complex karyoty-pic evolution of Taterillus. Furthermore, this study illustrates how cytogenetics can contribute to the description of sibling species and hence to biodiversity. These cryptic taxa also constitute valuable support for evolutionary studies, especially concerning speciation processes. They also represent important issues in applied research such as in conservation biology or pest species control. The routine use of cytogenetics for species characterization will undoubtedly constitute a powerful diagnostic tool in these contexts.

Keywords

Rodentia chromosomal evolution cytotaxonomy morphometry systematics Africa 

Eine neue Zwillingsart von Taterillus (Muridae, Gerbillinae) aus West-Afrika

Zusammenfassung

Jetzt kann die moderne Systematik sich auf Leistungsfähige Techniken wie die Cytogenetik gründen, und infolgedessen wurde eine zunehmende Anzahl neuer Zwillingsarten in vielen Taxa beschrieben. Unter den Säugetieren trifft dieses besonders für die Nagetiere zu. Hier beschreiben wir eine neue, auf Material von Mali und Mauritanien begründete Art der Gattung Taterillus (Rodentia, Gerbillinae), T. tranieri sp. n. Weder äußere noch Schädelmorphologie oder Morphometrien, die die Größe und Körperform erfassen, konnten zu einer befriedigenden Diagnose dieser Art im Vergleich mit vier anderen west-afrikanischen Arten der Gattung führen. Im Gegenteil konnte diese neue Art aber durch einen sehr spezifischen Karyotyp (mit 2N = 14/15) charakterisiert werden. Dieser Karyotyp hat die kleinste diploide Anzahl unter den Gerbillinen (NFa = 22-24), und ist von demjenigen seines nähesten Verwandten Taterillus petteri (2N = 18–19, NFa = 28) zu unterscheiden durch zwei Tandemtranslokationen, die von 2 centromeren Aktivationen/Desaktivationen begleitet sind, einer nichtreziproken Translokation, und drei pericentrischen Inversionen. Diese chromosomalen Ergebnisse bieten eindeutige Argumente für die Beschreibung dieses Taxon als eine neue biologische Art und weisen auf die komplexe karyotypische Evolution der Gattung Taterillus hin. Darüber hinaus veranschaulicht diese Arbeit auch wie die Cytogenetik zu der Beschreibung von Zwillingsarten, und folglich der Biodiversität, beitragen kann. Diese kryptischen Taxa liefern auch einen wertvollen Beitrag für Studien zur Evolution, auch ein wertvolles Material für Entwicklungsstudien, besonders im Hinblick auf Artbildungsprozesse. Sie sind auch wichtig für angewandte Forschung wie Schutzbiologie oder Schädlingsbekämpfung. Die Routineanwendung der Cytogenetik zur Erkennung von Arten wird sicherlich ein mächtiges diagnostisches Instrument in diesem Zusammenhang ausmachen.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barraclough, T. G.; Vogler, A. P.; Harvey, P. H. (1998): Revealing the factors that promote speciation. Phil. Trans. R. Soc. Lond. B. 353, 241–249.CrossRefGoogle Scholar
  2. Bowen, M. D.; Rollin, P. E.; Ksiazek, T. G.; Hus-Tad, H. L.; Bausch, D. G.; Demby, A. H.; Ba-Jani, M. D.; Peters, C. I.; Nichol, S. T. (2000): Genetic diversity among Lassa virus strains. J. Virology 74, 6992–7004.PubMedCrossRefGoogle Scholar
  3. Britton-Davidian, I.; Catalan, I.; Granjon, L.; Duplantier, J. M. (1995): Chromosomal phytogeny and evolution in the genus Mastomys (Mammalia, Rodentia). J. Mammalogy 76, 248–262.CrossRefGoogle Scholar
  4. Buckle, A. P.; Smith, R. H. (1994): Rodent Pests and their Control. Cambridge: Cambridge University Press.Google Scholar
  5. Dedet, J. P.; Hubert, B.; Desjeux, P.; Derouin, F. (1981): Ecologie d’un foyer de leishmaniose cutanee dans la region de Thies (Senegal, Afrique de l’Ouest). 5. Infestation spontanee et role de reservoir de diverses especes de rongeurs sauvages. Bull. Soc. Path. Exot. 74, 71–77.PubMedGoogle Scholar
  6. Delattre, P.; Duplantier, J. M.; Fichet-Cal-Vet, E.; Giraudoux, P. (1998): Pullulations de rongeurs, agriculture et sante publique. Les Cahiers de l’Agriculture 7, 285–298.Google Scholar
  7. Dobigny, G.; Aniskin, V.; Volobouev, V. (2001): Phylogeography of 7 species of Taterillus (Rodentia, Gerbillinae): evidence for the importance of chromosomal changes in a case of al-lopatric speciation. Chrom. Res. 9, suppl. 11, 107.Google Scholar
  8. Dobigny, G.; Denys, C. (2003): Etude morphome-trique des especes ouest-africaines de Taterillus (Rodentia, Gerbillinae). Zoosystema (in press).Google Scholar
  9. Dobigny, G.; Baylac, M.; Denys, C. (2002): Geometric morphometrics, neural networks and diagnosis of sibling Taterillus (Rodentia, Gerbillinae) species. Biol. J. Linnean Soc. 77, 319–328.CrossRefGoogle Scholar
  10. Ducroz, J. F (1998): Contribution des approches cytogenetique et moleculaire ä l’etude sys-tematique et evolutive des genres de rongeurs Murinae de la division Arvicanthis. Diss. Thesis, Museum National d’Histoire Naturelle, Paris.Google Scholar
  11. Ducroz, J. F.; Granjon, L.; Chevret, P.; Duplantier, J. M.; Lombard, M.; Volobouev, V. (1997): Characterisation of two distinct species of Arvicanthis niloticus (Rodentia, Muri-dae) in West Africa: cytogenetic, molecular and reproductive evidence. J. Zool. (London) 241, 709–723.CrossRefGoogle Scholar
  12. Ducroz, J. F.; Volobouev, V.; Granjon, L. (1998): A molecular perspective on the systematics and evolution of the genus Arvicanthis (Rodentia, Muridae): inferences from complete cytochrome b sequences. Mol. Phyl. Evol. 10, 104–117.CrossRefGoogle Scholar
  13. Duplantier, J. M.; Britton-Davidian, I.; Gan-Jon, L. (1990): Chromosomal characterization of three species of the genus Mastomys in Senegal. J. Zool. Syst. Evol. Res. 28, 289–298.CrossRefGoogle Scholar
  14. Ellermann, J. R. (1966): The families and genera of living rodents, Vol. II. London: Trustees of the British Museum.Google Scholar
  15. Fadda, C. (1998): Sistematica e variazione geo-grafica in roditori africani: morfometria geo-metrica e filogenesi molecolare. Diss. Thesis, Universita degli Studi La Sapienza di Roma.Google Scholar
  16. Genest, H.; Petter, F. (1973): Les Taterillus de Republique Centrafricaine (Rongeurs, Ger-billides). Mammalia 37, 66–75.CrossRefGoogle Scholar
  17. Githure, J. L.; Schnur, L. E.; Le Blancq, S. M.; Hendricks, L. D. (1986): Characterization of Kenyan Leishmania spp. and identification of Mastomys natalensis, Taterillus emini and Aethomys kaiseri as new hosts of Leishmania major. Ann. Trop. Med. Parasitol. 80, 501–506.PubMedCrossRefGoogle Scholar
  18. Gordon, D. H. (1991): Chromosomal variation in the water rat Dasymys incomtus (Rodentia: Muridae). J. Mammalogy 72, 411–414.CrossRefGoogle Scholar
  19. Gran Jon, L.; Aniskin, V.; Volobouev, V.; Si-Card, B. (2002): Sand-dwellers in rocky habitats: a new species of Gerbillus (Mammalia, Rodentia) from Mali. J. Zool. (London) 256, 181–190.CrossRefGoogle Scholar
  20. Granjon, L.; Bonnet, A.; Hamdine, W.; Volobouev, V. (1999): Reevaluation of the taxo-nomic status of North African gerbils usually referred to as Gerbillus pyramidum (Gerbilli-nae, Rodentia): chromosomal and biometrical data. Z. Säugetierkunde 64, 298–307.Google Scholar
  21. Granjon, L.; Duplantier, J. M.; Catalan, I.; Britton-Davidian, J. (1997): Systematics of the genus Mastomys (Thomas, 1915) (Rodentia, Muridae): a review. Belg. J. Zool. 127, suppl. 1, 7–18.Google Scholar
  22. Gratz, N. G. (1994): Rodents as carriers of diseases. In: Rodent Pests and their Control. Ed. by A. P. Buckle and R. H. Smith. Cambridge: Cambridge University Press. Pp. 85–108.Google Scholar
  23. Gratz, N. G. (1997): The burden of rodent-borne diseases in Africa south of the Sahara. Belg. J. Zool. 127, suppl. 1, 71–84.Google Scholar
  24. Greenbaum, I. E.; Reed, M. J. (1984): Evidence for heterosynaptic pairing of the inverted segment in pericentric inversion heterozygotes of the deer mouse (Peromyscus maniculatus). Cytogenet. Cell Genet. 38, 106–111.PubMedCrossRefGoogle Scholar
  25. Greenbaum, I. E.; Baker, R. I.; Ramsey, P. R. (1978): Chromosomal evolution and the mode of speciation in three species of Peromyscus. Evolution 32, 646–654.PubMedCrossRefGoogle Scholar
  26. Hale, D. W.; Greenbaum, I. F. (1988): Synapsis of a chromosomal pair heterozygous for a pericentric inversion and the presence of a het-erochromatic short arm. Cytogenet. Cell Genet. 48, 55–57.PubMedCrossRefGoogle Scholar
  27. Hubert, B. (1982): Ecologie des populations de deux rongeurs sahelo-soudaniens ä Bandia, Senegal. Diss. Thesis, Universite de Paris XLGoogle Scholar
  28. Hubert, B.; Meylan, A.; Petter, E.; Poulet, A.; TrÄnier, M. (1983): Different species in genus Mastomys from Western, Central and Southern Africa (Rodentia, Muridae). Annales du Musee Royale d’Afrique Centrale, Zoologie 237, 143–148.Google Scholar
  29. Isaacson, M.; Arntzen, L.; Taylor, P. (1981): Susceptibility of members of the Mastomys natalensis species complex to experimental infection with Yersinia pestis. J. Infect. Dis. 144, 80.PubMedCrossRefGoogle Scholar
  30. Kasahara, S.; Dutrillaux, B. (1983): Chromosome banding patterns of four species of bats, with special reference to a case of X-autosome translocation. Ann. Genet. 26, 197–201.PubMedGoogle Scholar
  31. King, M. (1993): Species Evolution: the Role of Chromosomal Change. Cambridge.; Cambridge University Press.Google Scholar
  32. Lay, D. M. (1983): Taxonomy of the genus Gerbillus (Rodentia, Gerbillinae) with comments on the applications of generic and subgeneric names and an annotated list of species. Z. Säugetierkunde 48, 329–354.Google Scholar
  33. Lay, D.M.; Agerson, K.; Nadler, C. E (1975): Chromosomes of some species of Gerbillus (Mammalia, Rodentia). Z. Säugetierkunde 40, 141–150.Google Scholar
  34. Leirs, H. (1995): Population ecology of Mastomys natalensis: implications for rodent control in Africa. Report from the Tanzania-Belgium Joint Rodent Research Project. BADC, Agricultural Edition 35.Google Scholar
  35. Matthey, R. (1954): Nouvelles donnees sur les formules chromosomiques des Muridae. Ex-perientia 10, 66–67.Google Scholar
  36. Matthey, R. (1969): Chromosomes de Gerbillinae, genres Tatera et Taterillus. Mammalia 33, 522–528.CrossRefGoogle Scholar
  37. Matthey, R. (1970): L’ “eventail robertsonien” chez les Mus (leggadd) africains du groupe minutoides-musculoides. Rev. Suisse Zool. 77, 625–629.PubMedCrossRefGoogle Scholar
  38. Matthey, R.; Petter, E. (1970): Etude cytogene-tique et taxonomique de 40 Tatera et Taterillus provenant de Haute-Volta et de Republi-que Centrafricaine (Rongeurs, Gerbillidae). Mammalia 34, 585–597.Google Scholar
  39. Matthey, R.; Jotterand, M. (1972): L’analyse du caryotype permet de reconnaitre deux especes cryptiques confondues sous le nom de Taterillus gracilis Th. (Rongeurs, Gerbillidae). Mammalia 36, 193–209.CrossRefGoogle Scholar
  40. May, R. (1990): Taxonomy as destiny. Nature 347, 129–130.CrossRefGoogle Scholar
  41. Mayr, E. (1963): Animal Species and Evolution. Cambridge: Harvard University Press.CrossRefGoogle Scholar
  42. Meester, J. (1988): Chromosomal speciation in Southern African small mammals. S. Afr. J. Sc. 84, 721–724.Google Scholar
  43. Mills, IN.; Bowen, M. D.; Nichol, S.T. (1997): African arenavirus: co-evolution between virus and murid hosts? Belg. J. Zool. 127, suppl. 1, 19–28.Google Scholar
  44. Montgelard, C.; Benyamin, Y.; Roustan, C.; Thaler, L. (1990): Identification of sibling mice species (genus Mus) by a simple immunological test. Biol. J. Linnean Soc. 41, 163–169.CrossRefGoogle Scholar
  45. Mosimann, J. E. (1970): Size allometry: size and shape variables with characterizations of the log-normal and generalized gamma distributions. J. Am. Stat. Ass. 65, 930–945.CrossRefGoogle Scholar
  46. Mosimann, J. E.; James, F. C. (1979): New statistical methods for allometry with application to Florida red-winged blackbirds. Evolution 33, 444–459.PubMedCrossRefGoogle Scholar
  47. Musser, G. G.; Carleton, M. D. (1993): Roden-tia, Sciurognathi, Muridae. In: Mammal Species of the World: a taxonomic and geographic reference (2nd ed.). Ed. by D. E. Wilson and R. M. Reeder. Washington, London: SMITHSONIAN Institution Press. Pp. 562–563.Google Scholar
  48. Petter, F. (1971): Nouvelles methodes en sys-tematique des Mammiferes: cytotaxonomie et elevage. Mammalia 35, 351–357.Google Scholar
  49. Petter, E.; Poulet, A.; Hubert, B.; Adam, F. (1972): Contribution ä l’etude des Taterillus du Sénégal T. pygargus (E Cuvier, 1832) et T. gracilis (Thomas, 1892) (Rongeurs, Gerbillides). Mammalia 36, 210–213.Google Scholar
  50. Poulet, A. R. (1981): Pullulations de rongeurs dans le sahel: mecanismes et determinisme du cycle d’abondance de Taterillus pygargus et d’Arvicanthis niloticus (Rongeurs, Gerbillides et Muridés) dans le sahel du Sénégal de 1975 ä 1977. Diss. Thesis, Universite de Paris VI.Google Scholar
  51. Qumsiyeh, M. B.; Schlitter, D. A. (1991): Karyo-typic trends in the rodent family Gerbillidae. Occ. P. Mus. Texas Tech Univ. 144, 1–20.Google Scholar
  52. Ratomponirina, C.; Viegas-Pequignot, E.; Du-Trillaux, B.; Petter, F.; Rumpler, Y. (1986): Synaptonemal complexes in Gerbillidae: probable role of intercalated heterochromatin in gonosome-autosome translocations. Cyto-genet. Cell Genet. 43, 161–167.CrossRefGoogle Scholar
  53. Reyers, B.; Van Jaarsveld, A. S.; Kruger, M. (2000): Complementarity as a biodiversity indicator strategy. Proc. R. Soc. Lond. 7, 505–513.CrossRefGoogle Scholar
  54. Robbins, C. B. (1974): Comments on the taxonomy of the West African Taterillus (Rodentia, Cricetidae) with description of a new species. Proc. Biol. Soc. Wash. 87, 395–403.Google Scholar
  55. Robbins, C. B. (1975): The systematics, ecology and zoogeography of the african gerbils, Taterillus (Rodentia, Cricetidae). Diss. Thesis, University of Arizona.Google Scholar
  56. Robinson, T (2001): The comparative cytogenetics of African small mammals in perspective: status, trends, and bibliography. In: African Small Mammals. Ed. by C. Denys, L. Granjon and A. Poulet. Editions I.R.D, Paris. Pp. 185–214.Google Scholar
  57. Rosevear, D. R. (1969): The Rodents of Africa. London. Trustees of the British Museum (Natural History).Google Scholar
  58. Seabright, M. (1971): A rapid banding technique for human chromosomes. Lancet 2, 971–972.PubMedPubMedCentralCrossRefGoogle Scholar
  59. Sharman, G. B. (1956): Chromosomes of the common shrew. Nature 177, 941–942.PubMedCrossRefGoogle Scholar
  60. Sicard, B. (1992): Influence de l’aridite sur la bio-logie des rongeurs soudano-saheliens. In: L’aridité: une contrainte au developpement. Editions O.R.S.T.O.M., Paris. Pp. 311–333.Google Scholar
  61. Sicard, B.; Papillon, Y. (1996): Water distribution and the life cycle of sahelian rodents. Mammalia 60, 607–617.Google Scholar
  62. Sicard, B.; TrÄnier, M.; Gautun, J. C. (1988): Un rongeur nouveau du Burkina-Faso (ex Haute -Volta): Taterillus petteri, sp. nov. (Rodentia, Gerbillinae). Mammalia 52, 187–188.CrossRefGoogle Scholar
  63. Sumner, A. (1972): A simple technique for demonstrating centromeric heterochromatin. Exp. Cell Res. 75, 304–306.PubMedCrossRefGoogle Scholar
  64. Taylor, P. (2000): Patterns of chromosomal variation in Southern African rodents. J. Mammalogy 81, 317–331.CrossRefGoogle Scholar
  65. Tong, H. (1988): Origine et Evolution des Gerbillidae (Mammalia, Rodentia) en Afrique du Nord. Diss. Thesis, Universite de Paris VI.Google Scholar
  66. TrÄnier, M. (1974): Polymorphisme chromosomi-que multiple chez des Taterillus du Niger (Rongeurs, Gerbillides). C. R. A. S. Paris 278, 3347–3350.Google Scholar
  67. Vassart, M.; Seguela, A.; Hayes, H. (1995): Chromosomal evolution in Gazelles. J. Heredity 86, 216–227.CrossRefGoogle Scholar
  68. Vassart, M.; Guedant, A.; Vie, J. C.; Keravec, I.; Seguela, A.; Volobouev, V (1996): Chromosomes of Alouatta seniculus (Platyrrhini, Primates) from French Guiana. J. Heredity 87, 331–334.CrossRefGoogle Scholar
  69. Viegas-Pequignot, E.; Petit, D.; Benazzou, T.; Prod’homme, M.; Lombard, M.; Hoff-Schir, F.; Descailleaux, I.; Dutrillaux, B. (1986): Phylogenie chromosomique chez les Sciuridae, Gerbillidae et Muridae, et etude d’especes appartenant ä d’autres families de rongeurs. Mammalia 50, suppl., 164–202.Google Scholar
  70. Volobouev, V.; Granjon, L. (1996): A finding of the XX/XY1Y2 sex-chromosome system in Taterillus arenarius (Gerbillinae, Rodentia) and its phylogenetic implications. Cytogenet. Cell Genet. 75, 45–48.PubMedCrossRefGoogle Scholar
  71. Volobouev, V.; Aniskin, V.; Lecompte, E.; Du-Croz, J. F (2002b): Patterns of karyotype evolution in complexes of sibling species within three genera of African murid rodents inferred from the comparison of cytogenetic and molecular data. Cytogenet Genome Res. 96, 261–275.PubMedCrossRefGoogle Scholar
  72. Volobouev, V.; Hoffman, A.; Sicard, B.; Gran-Jon, L. (2001): Polymorphism and polytypy for pericentric inversions in 38-chromosome Mastomys (Rodentia, Murinae) and possible taxonomic implications. Cytogenet. Cell Genet. 92, 237–242.PubMedCrossRefGoogle Scholar
  73. Volobouev, V.; Sicard, B.; Aniskin, V.; Gau-Tun, J. C.; Granjon, L. (2000): Robertsonian polymorphism, B chromosomes variation and sex chromosomes heteromorphism in the African water rats Dasymys (Rodentia, Muri-dae). Chrom. Res. 8, 689–697.PubMedCrossRefGoogle Scholar
  74. Volobouev, V.; Viegas-Pequignot, E.; Lombard, M.; Duplantier, J. M.; Dutrillaux, B. (1988): Chromosomal evidence for a polytypic structure of Arvicanthis niloticus (Rodentia, Muridae). J. Zool. Evol. 26, 276–285.CrossRefGoogle Scholar
  75. Volobouev, V.; Ducroz, J. E.; Aniskin, V.; Brit-Ton-Davidian, I.; Castiglia, R.; Dobigny, G.; Granjon, L.; Lombard, M.; Sicard, B.; Ca-Panna, E. (2002a): Chromosomal characterisation of Arvicanthis species (Rodentia: Murinae) from Western and Central Africa: implications on taxonomy. Cytogenet Genome Res. 96, 250–260.PubMedCrossRefGoogle Scholar
  76. Wahrman, I.; Richler, C.; Ritte, U. (1988): Chromosomal considerations in the evolution of the Gerbillinae of Israel and Sinai. In: The Zoogeography of Israel. Ed. by Y. Yom-Tov and E. Tchernov. Dordrecht: W. Junk Publishers. Pp. 439–485.Google Scholar
  77. White, M. J. D. (1968): Models of speciation. Science 159, 1065–1070.PubMedCrossRefGoogle Scholar
  78. Wuster, D.; Benirshke, K. (1970): Indian munt-jak, Muntiacus muntjak, a deer with low diploid chromosome number. Science 168, 1364–1366.CrossRefGoogle Scholar

Copyright information

© Deutsche Gesellschaft für Säugetierkunde 2003

Authors and Affiliations

  • G. Dobigny
    • 1
    Email author
  • L. Granjon
    • 2
  • V. Aniskin
    • 3
  • K. Ba
    • 4
  • V. Volobouev
    • 1
  1. 1.Museum National d’Histoire NaturelleLaboratoire Mammiferes et OiseauxParisFrance
  2. 2.Institut de Recherche pour le DeveloppementLaboratoire de Mammalo-gieBamakoMali
  3. 3.Severtsov Institute of Ecology and EvolutionRussian Academy of SciencesMoscowRussia
  4. 4.I.R.D, Laboratoire d’Entomologie MedicaleDakarSenegal

Personalised recommendations