Advertisement

Mammalian Biology

, Volume 67, Issue 5, pp 294–303 | Cite as

Allozymic polymorphism and genetic differentiation among populations of Calomys musculinus and Calomys laucha (Rodentia: Muridae) from eastern Argentina

  • Cristina N. GardenalEmail author
  • Marina B. Chiappero
  • Gloria M. De Luca D’Oro
  • J. N. Mills
Original investigation

Abstract

The genetic variability and divergence among natural populations of Calomys musculinus and C. laucha from eastern Argentina were examined by protein electrophoresis of 24 Loci. High levels of genetic variability were found in both species when compared to other rodents and mammals. Mean expected heterozygosity (He) ranged from 0.112 to 0.156, proportion of polymorphic Loei (P95%) from 37.5% to 50% and mean number of alleles per Locus (A) of 1.6-1.7 for C. musculinus. He from 0.097 to 0.126, P95% from 34.8 to 39.1 and A. from 1.7 to 1.9 were the values for C. laucha. Populations of this Last species revealed a. higher degree of geographical differentiation (9 = 0.017, P. < 0.05) than those of C. musculinus (9 = 0.002, P. > 0.05). These results are in agreement with the known social structure and habitat of both species. C. musculinus is an opportunistic species, with a. Loose social structure and a. predominance of transient over resident animals, indicating a. high ambulatory activity. C. laucha, on the contrary, inhabits almost exdusively cultivated fields, and evidence of social stratification has been reported for this species.

Key words

Calomys allozyme variation genetic differentiation 

Allozymischer Polymorphismus und genetische Differenzierung zwischen Populationen von Calomys musculinus und Calomys laucha (Rodentia: Muridae) aus dem östlichen Argentinien

Zusammenfassung

Die genetische Variabilität und Divergenz zwischen natürlichen Populationen von Calomys musculinus und C laucha aus dem östlichen Argentinien wurde durch Gelelektrophorese an 24 Protein loci studiert. Bei beiden Arten wurden hohe Niveaus genetischer Variabilität gefunden (He zwischen 0.112 und 0.156, P95% zwischen 37.5% und 50% und A zwischen 1.6 und 1.7 bei C. musculinus; He zwischen 0.126 und 0.097, P95% zwischen 34.8 und 39.1 und A zwischen 1.7 und 1.9 bei C. laucha) im Vergleich mit anderen Arten von Nagetieren und Säugetieren. Die Populationen von C. laucha zeigten einen höheren Grad von geographischer Differenzierung als die von C. musculinus. Diese Ergebnisse stimmen überein mit Sozialstruktur und Habitaten beider Arten zu. C. musculinus ist eine opportunistische Art, mit einer offenen Sozialstruktur und Vorherrschen von durchziehenden über residente Tiere, was eine höhere lokomotorische Aktivität zeigt. Im Gegensatz dazu, bewohnt C. laucha fast nur Ackerland. Diese “Mosaik-Verteilung” würde eine genetische Differenzierung zwischen Unterpopulationen begünstigen.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Black, W. C. VI (1997): A. Computer Program for the Analysis of Allelic Variation in Genetics. Modification of original version (BIOSYS-1) by David L. Swofford and Richard B. SE-LANDER. Available at: wcb4@lamar.colostate.edu.Google Scholar
  2. Contreras, J. R.; Rosi, M. I. (1980): Comportamiento territorial y. fidelidad al habitat en una población de roedores del centro de la provincia de Mendoza. Ecologia 5, 17–29.Google Scholar
  3. Dempster, A. E.; Laird, N. M.; Rubin, D. B. (1977): Maximum likelihood from incomplete data via the EM algorithm. J. Royal Stat. Soc. B. 39, 1–38.Google Scholar
  4. De Villafane, G.; Bonaventura, S. M.; Bel-Locq, M. L.; Percich, R. E. (1988): Habitat selection, social structure, density, and predation in populations of Cricetinae rodents in the pampa region of Argentina and the effects of agricultural practices on them. Mammalia 52, 339–359.CrossRefGoogle Scholar
  5. Ellis, B. A.; Mills, I. N.; Childs, J. E.; Muzzi-Ni, M. C.; Mckee, K. T.; Enrla, D. A.; Glass, G. E. (1997): Structure and floristics of habitats associated with five rodent species in an agroecosystem in Central Argentina. J. Zool. (London) 243, 437–460.CrossRefGoogle Scholar
  6. Garcia, B. A.; Gardenal, C. N. (1989): Enzyme polymorphism and inheritance of allozymic variants in Calomys laucha. Com. Biol. 8, 1–10.Google Scholar
  7. Garcia, B. A.; Gardenal, C. N.; Blanco, A. (1990): Heterozygosity and gene flow in populations of Calomys laucha. Hereditas 112, 179–186.Google Scholar
  8. Garcia, B. A.; Gardenal, C. N.; Blanco, A. (1991): Microgeographic distribution of allele frequencies in populations of Calomys laucha. Heredity 66, 411–417.CrossRefGoogle Scholar
  9. Gardenal, C. N.; Blanco, A. (1985): Polimorfismo enzimatico en Calomys musculinus: Nueva estimación. Mendeliana 7, 3–12.Google Scholar
  10. Gardenal, C. N.; Blanco, A.; Sabattini, M. S. (1977): Contribución al conocimiento de tres especies del género Calomys (Rodentia, Cricetidae). II. Analisis electroforético como criterio de diferenciación taxonómica. Physis 36, 179–188.Google Scholar
  11. Gardenal, C. N.; Garcia, B. A.; Sabattini, M. S.; Blanco, A. (1990): Protein polymorphism and genetic distance in South American cricetidae of the genus Calomys. Genetica 80, 175–180.Google Scholar
  12. Gardenal, C. N.; Sabattini, M. S.; Blanco, A. (1980): Enzyme polymorphism in a. population of Calomys musculinus. Biochem. Genet. 18, 563–575.CrossRefGoogle Scholar
  13. Gillespie, J. H.; Kojima, K. (1968): The degree of polymorphisms in enzymes involved in energy production compared to that in nonspecific enzymes in two Drosophila ananassae populations. Proc. Natl. Acad. Sci. USA 61, 582–585.CrossRefGoogle Scholar
  14. Gillespie, J. H.; Langley, C. H. (1974): A. general model to account for enzyme variation in natural populations. Genetics 76, 837–884.PubMedGoogle Scholar
  15. Goudet, J. (1999): FSTAT, a. program for Windows 95, 98 and NT to estimate and test gene diversities and Fixation indices (version 2.9.1). Available at https://doi.org/www.unil.ch/izea/softwares/fstat.htmlGoogle Scholar
  16. Guo, S. W.; Thompson, E. A. (1992): Performing the exact test of HardyWeinberg proportions for multiple alleles. Biometrics 48, 361–372.CrossRefGoogle Scholar
  17. Mills, J. N.; Childs, J. E. (1998): Ecologic studies of rodent reservoirs: their relevance for human health. Emerging Infectious Diseases 4, 529–537.CrossRefGoogle Scholar
  18. Mills, J.N.; Ellis, B. A.; Mckee, K.T.; Calde-Rón, G. E.; Maiztegui, J. L.; Nelson, G. O.; Ksiazek, T. G.; Peters, C. I.; Childs, I.E. (1992): A. longitudinal study of Junin virus activity in the rodent reservoir of Argentine Hemorrhagic Fever. Am. J. Trop. Med. Hyg. 47, 749–763.CrossRefGoogle Scholar
  19. Mills, J.N.; Ellis, B. A.; Mckee, K. T.; Maiztegui, I. L.; Childs, J. E. (1991): Habitat associations and relative densities of rodent populations in cultivated areas of central Argentina. J. Mammalogy 72, 470–479.CrossRefGoogle Scholar
  20. Mitton, J. B. (1998): Selection in Natural Populations. Oxford: Oxford University Press.Google Scholar
  21. Nei, M. (1972): Genetic distance between populations. Am. Nat. 106, 283–292.CrossRefGoogle Scholar
  22. Nei, M. (1978): Estimation of average heterozygosity and genetic distance from a. small number of individuals. Genetics 83, 583–590.Google Scholar
  23. Nevo, E.; Beiles, A. (1988): Genetic parallelism of protein polymorphism in nature: Ecological test of the neutral theory of molecular evolution. Biol. J. Linn. Soc. 35, 229–245.CrossRefGoogle Scholar
  24. Nevo, E.; Beiles, A.; Ben-Shlomo, R. (1984): The evolutionary significance of diversity: ecologi-cal, demographic and life history correlates. In: Evolutionary Dynamics of Genetic Diversity. Ed. by G. S. MANI. Lecture Notes in Bio-mathematics 53, 13–213.Google Scholar
  25. Raymond, M.; Rousset, F. (1995): GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J. Heredity 86, 248–249.CrossRefGoogle Scholar
  26. Selander, R. K.; Smith, M. H.; Yang, S. Y.; Johnson, W. E.; Gentry, J. B. (1971): Studies in genetics. VI. Biochemical polymorphism and systematics in the genus Peromyscus. I. Variation in the o. ld-field mouse (Peromyscus polio-notus). Univ. Tex. Publs. 7103, 49–90.Google Scholar
  27. Thelen, G. C.; Allendorf, F. W. (2001): Heterozygosityfitness correlations in rainbow trout: effects of allozyme loei or associative overdominance?. Evolution 55, 1180–1187.CrossRefGoogle Scholar
  28. Ward, R. D.; Skibinski, D. O. F.; Woodwark, M. (1992): Protein heterozigosity, protein structure and taxonomie differentiation. In: Evolutionary Biology Vol. 26. Ed. by M. K. HECHT. New York: Plenum Press.Google Scholar
  29. Weir, B. S. (1996): Genetic Data Analysis II. Sunderland MA: Sinauer Publ.Google Scholar
  30. Weir, B. S.; Cockerham, C. C. (1984). Estimating Fstatistics for the analysis of population structure. Evolution 38, 1358–1370.PubMedPubMedCentralGoogle Scholar

Copyright information

© Deutsche Gesellschaft für Säugetierkunde 2002

Authors and Affiliations

  • Cristina N. Gardenal
    • 1
    Email author
  • Marina B. Chiappero
    • 1
  • Gloria M. De Luca D’Oro
    • 1
  • J. N. Mills
    • 2
  1. 1.Catedra de Química BiológicaUniversidad Nacional de CórdobaCórdobaArgentina
  2. 2.Centers for Disease Control and PreventionAtlantaUSA

Personalised recommendations