Advertisement

Mammalian Biology

, Volume 67, Issue 2, pp 97–104 | Cite as

Factors affecting home range size and overlap in Calomys venustus (Muridae: Sigmodontinae) in Argentine agroecosystems

  • J. PriottoEmail author
  • Andrea Steinhann
  • J. Polop
Original investigation

Abstract

In this study, information concerning home range size and overlap of Calomys venustus (Thomas, 1894), in relation to sex, population size, and breeding periods is provided. The present study was carried out on a railway bank in southern Córdoba Province (Argentina), between October 1994 and September 1997, using the capture-mark-recapture method. Home range size in C. venustus depended on breeding period and population size, and was independent of sex. The degree of home range overlap was dependent on breeding and non-breeding periods and overlap type (intra-or intersexual), but was independent of population density. During the breeding period, females showed a small degree of intrasexual home range overlap. In general, male home ranges largely overlapped with females. The conclusion is that differences in home range size of C. venustus could be determined by season and population size. Moreover, the degree of inter- and intrasexual home range overlap during the breeding period suggested that males and females of C. venustus use space differently. Females did not share their home range with other females, while males fully shared it with both sexes, and male spacing is influenced by female distribution.

Keywords

Calomys venustus spatial organization population density Argentine agroecosystems 

Faktoren, die Größe und Überlappung derWohngebiete von Calomys venustus (Muridae: Sigmodontinae) in argentinischen Agro-Ökosystemen beeinflussen

Zusammenfassung

In dieser Studie werden Ausdehnung und Überlappung der Wohngebiete von Calomys venustus (Thomas, 1894) untersucht in Beziehung zu den Variablen Geschlecht, Populationsdichte und während re-produktiver und nicht-reproduktiver Perioden. Die Datenerhebung erfolgte zwischen Oktober 1994 und September 1997 an Eisenbahndämmen im Süden der Provinz Córdoba, Argentinian mittels der Fang-Markierung-Neufang-Methode. Die Größe der Wohngebite von C. venustus war abhangig von Re-produktionsperiode und Populationsdichte, aber unabhängig vom Geschlecht. Der Grad der Überlappung der Wohngebite zeigte Abhangigkeiten von den Perioden und dem (intra- und intersexuellen) Überlappungstyp, war aber unabhängig von der Populationsdichte. Während der Reproduktionsperiode zeigten die Weibchen einen geringeren Grad von Überlappungen ihrer Wohngebiete. Im allgemeinen überlappten die Wohngebiete der männlichen Tiere deutlich diejenigen der weiblichen Tiere. Unsere Schlußfolgerung ist, daß sowohl Reproduktionsperiode als auch Größe der Population die Ausdehnung der Wohngebiete von C. venustus beeinflussen. Außerdem legt der Grad der inter- und intrasexuellen Überlappung während der Reproduktionszeit nahe, daß sowohl weibliche als auch männliche Indivi-duen ihre Wohngebiete auf unterschiedliche Weise nutzen: während die Weibchen das Gebiet nicht mit anderen Weibchen teilen, leben die Mannchen mit Individuen beider Geschlechter zusammen.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abramsky, Z.; Tracy, C. R. (1980): Relation between home range sizes and regulation of population size in Microtus ochrogaster. Oikos 34, 347–355.CrossRefGoogle Scholar
  2. Adler, G. M.; Wilson, M. L. (1987): Demography of a habitat generalist, the white-footed mouse, in a heterogeneous environment. Ecology 68, 1785–1796.PubMedCrossRefPubMedCentralGoogle Scholar
  3. Batzli, G. O. (1968): Dispersion patterns of mice in California annual grassland. J. Mammalogy 49, 239–250.CrossRefGoogle Scholar
  4. Batzli, G. O.; Henttonen, H. (1993): Home range and social organization of the singing vole (Microtus miurus). J. Mammalogy 74, 868–878.CrossRefGoogle Scholar
  5. Bondrup-Nielsen, S. (1986): Analysis of spacing behaviour of females from a live-trapping study of Clethrionomys gapperi. Ann. Zool. Fenn. 23, 261–267.Google Scholar
  6. Busch, M.; Kravetz, F. O. (1992): Competitive interactions among rodents (Akodon azarae, Calomys laucha, C. musculinus, and Oligoryzomys flavescens) in a two-habitat system. I. Spatial and numerical relationships. Mammalia 56, 45–56.Google Scholar
  7. Cabrera, A. (1953): Esquema fitogeográfico de la República Argentina. Revista Museo de la Plata, Botánica 8, 87–168.Google Scholar
  8. Castellarini, F. (1999): La alimentatión del roedor Calomys venustus en poblaciones dc Córdoba, Diss, thesis, Universidad Autónoma de Madrid, España.Google Scholar
  9. Castellarini, F.; Agnelli, H.; Polop, J. J. (1998): Study on the diet and feeding pbl]References of Calomys venustus (Rodentia, Muridae). Mastozoología Neotropical 5, 5–11.Google Scholar
  10. Desy, E. A.; Batzli, G. O.; Liu, J. (1989): Comparison of vole movements assessed by live trapping and radiotracking. J. Mammalogy 70, 652–656.CrossRefGoogle Scholar
  11. de Villafañe, G.; Bonaventura, S. M. (1987): Ecological studies in crop fields of the endemic area of Argentine haemorrhagic fever. Calomys musculinus movements in relation to habitat and abundance. Mammalia 51, 233–248.CrossRefGoogle Scholar
  12. de Villafañce, G.; Bonaventura, S. M.; Bel-Locq, M. L.; Percich, R. E. (1988): Habitat selection, social structure, density and prédation in populations of Cricetine rodents in the pampa region of Argentina and the effects of agricultural practices on them. Mammalia 52, 339–369.Google Scholar
  13. Emlen, S. T.; Oring, L. W. (1977): Ecology, sexual selection, and the evolution of mating systems. Science 197, 215–223.PubMedCrossRefPubMedCentralGoogle Scholar
  14. Erlinge, S.; Hoogenboom, I.; Agrell, I.; Nelson, I.; Sandell, M. (1990): Density-related home-range size and overlap in adult field voles (Microtus agrestis) in southern Sweden. J. Mammalogy 71, 597–603.CrossRefGoogle Scholar
  15. Fauske, I.; Andreassen, H. P.; Ims, R. A. (1997): Spatial organization in a small population of the root vole Microtus oeconomus in a linear habitat. Acta Theriol. 42, 49–90.CrossRefGoogle Scholar
  16. Gaines, M.; Johnson, M. (1982): Home range size an population dynamics in the prairie vole Microtus ochrogaster. Oikos 39, 63–70.CrossRefGoogle Scholar
  17. Gaulin, S. I.; Fitzgerald, R. W. (1988): Home range size as a predictor of mating systems in Microtus. J. Mammalogy 69, 311–319.CrossRefGoogle Scholar
  18. Getz, L. L. (1961): Home ranges, territoriality, and movement of the meadow vole. J. Mammalogy 42, 24–36.CrossRefGoogle Scholar
  19. Heske, E.J.; Ostfeld, R. S. (1990): Sexual dimorphism in size, relative size of testes, and mating systems in North American voles. J. Mammalogy 71, 510–519.CrossRefGoogle Scholar
  20. Hlxon, M. (1980): Food production and competitor density as determinants of feeding territory size. Am. Nat. 115, 510–530.CrossRefGoogle Scholar
  21. Hubbs, A. H.; Boonstra, R. (1998): Effects of food and predators on the home range size of arctic ground squirrels (Spermophilus parryii). Can. J. Zool. 76, 592–596.CrossRefGoogle Scholar
  22. Ims, R. A. (1987): Responses in spatial organization and behaviour to manipulations of the food resource in the vole Clethrionomys rufo-canus. J. Anim. Ecol. 56, 585–596.CrossRefGoogle Scholar
  23. Ims, R. A. (1988a): The potential for sexual selection in males: effect of sex ratio and spatio-temporal distribution of receptive females. Evol. Ecol. 2, 338–352.CrossRefGoogle Scholar
  24. Ims, R. A. (1988b): Spatial clumping of sexually receptive females induces space sharing among male voles. Nature 335, 541–543.PubMedCrossRefPubMedCentralGoogle Scholar
  25. Jones, E. N. (1990): Effects of forage availability on home range and population density of Microtus pennsylvaniens. J. Mammalogy 71, 382–389.CrossRefGoogle Scholar
  26. Jennrich, R. I.; Turner, F. B. (1969): Measurement of noncircular home range. J. Theor. Biol. 22, 227–237.PubMedCrossRefPubMedCentralGoogle Scholar
  27. Kravetz, F. O.; Polop, J. J. (1983): Comunidades de roedores en agroecosistemas del Departa-mento Río Cuarto, Córdoba. Ecosur 10, 1–18.Google Scholar
  28. Krebs, C. J. (1966): Demographic changes in fluctuating populations of Microtus californiens. Ecol. Monogr. 36, 239–273.CrossRefGoogle Scholar
  29. Lindstedt, S. L.; Miller, B. L.; Buskirk, S. W. (1986): Home range, time and body size in mammals. Ecology 67, 413–418.CrossRefGoogle Scholar
  30. Loy, A.; Dupre, E.; Capanna, E. (1994): Territorial behavior in Talpa romana, a fossorial insectivore from south central Italy. J. Mammalogy 75, 529–535.CrossRefGoogle Scholar
  31. Madison, D. M. (1978): Movement indicators of reproductive events among female meadow voles as revealed by radiotelemetry. J. Mammalogy 59, 835–843.CrossRefGoogle Scholar
  32. Madison, D. M. (1980): Space use and social structure in meadow voles, Microtus pennsylvanicus. Behav. Ecol. Sociobiol. 7, 65–71.CrossRefGoogle Scholar
  33. Madison, D. M. (1985): Activity rhythms and spacing in biology of new world Microtus. In: Biology of New World Microtus. Ed. by R. H. Tamarin. Am. Soc. Mammal. Spec. Publ. 8, 373–413.Google Scholar
  34. Mazurkiewicz, M. (1971): Shape, size and distribution of home ranges of Clethrionomys glareolus (Schreber 1780). Acta Theriol. 16, 23–60.CrossRefGoogle Scholar
  35. Mcshea, W. I.; Madison, D. M. (1992): Presaturation and saturation dispersal 15 years later: some theoretical considerations. In: Animal Dispersal, Small Mammals as a Model. Ed. By N. Ch. Stenseth and W. Z. Lidicker Jr. London: Chapman and Hall. Pp. 319–329.Google Scholar
  36. Metzgar, L. H. (1971): Behavioral population regulation in the woodmouse, Peromyscus. Am. Midi. Nat. 86, 434–448.CrossRefGoogle Scholar
  37. Mills, H.; Ellis, B. A.; Mckee, K. T.; Maizte-Gui, J. I.; Childs, J. E. (1991): Habitat associations and relative densities of rodent populations in cultivated areas of central Argentina. J. Mammalogy 72, 470–479.CrossRefGoogle Scholar
  38. Nelson, J. (1995a): Determinants of male spacing behavior in microtines: an experimental manipulation of female spatial distribution and density. Beh. Ecol. Sociobiol. 37, 217–223.CrossRefGoogle Scholar
  39. Nelson, J. (1995b): Intrasexual competition and spacing behavior in male field voles, Microtus agrestis, under constant female density and spatial distribution. Oikos 73, 9–14.CrossRefGoogle Scholar
  40. Ostfeld, R. S. (1985): Limiting resources and territoriality in microtine rodents. Am. Nat. 126, 1–15.CrossRefGoogle Scholar
  41. Ostfeld, R. S. (1986): Territotiality and mating system of California voles. J. Anim. Ecol. 55, 691–706.CrossRefGoogle Scholar
  42. Ostfeld, R. S. (1990): The ecology of territoriality in small mammals. Trends Ecol. Evol. 5, 411–415.PubMedCrossRefPubMedCentralGoogle Scholar
  43. Ostfeld, R. S.; Lidicker, W. Z., Jr.; Heske, J. (1985): The relationship between habitat heterogeneity, space use, and demography in a population of California voles. Oikos 45, 433–442.CrossRefGoogle Scholar
  44. Polop, J. J. (1996): Análisis de la respuesta adaptativa del género Calomys. Diss, thesis, Universidad Nacional de Río Cuarto, Argentina.Google Scholar
  45. Polop, J. J.; Sabattini, M. S. (1993): Rodent abundance and distribution in habitats of Agroce-nosis in Argentina. Studies on Neotropical Fauna and Environment 28, 39–46.CrossRefGoogle Scholar
  46. Priotto, J. W.; Polop, J. J. (1997): Space and time use in syntopic populations of Akodon azarae and Calomys venustus (Rodentia, Muridae). Z. Säugetierkunde 62, 30–36.Google Scholar
  47. Priotto, J. W.; Steinmann, A. R. (1999): Factors affecting home range size and overlap in Akodon azarae (Muridae: Sigmodontinae) in natural pasture of Argentina. Acta Theriol. 44, 37–44.CrossRefGoogle Scholar
  48. Ribble, D. O.; Stanley, S. (1998): Home range and social organization of syntopic Peromyscus boylii and P. truei. J. Mammalogy 79, 932–941.CrossRefGoogle Scholar
  49. Sokal, R. R.; Rohlf, E. J. (1981): Biometry. San Francisco: W. H. Freeman.Google Scholar
  50. Stickel, L. F. (1954): A comparison of certain methods of measuring ranges of small mammals. J. Mammalogy 35, 1–5.CrossRefGoogle Scholar
  51. Swihart, R. K.; Slade, N. A. (1985): Influence of sampling interval on estimates of home range sizes. J. Wildl. Mgmt. 49, 1019–1025.CrossRefGoogle Scholar
  52. Swihart, R.; Slade, N. A.; Bergstrom, B. J. (1988): Relating body size to the rate of home range use in mammals. Ecology 69, 393–399.CrossRefGoogle Scholar
  53. Taitt, M. J. (1981): The effect of extra food on small rodent populations: I. Deer mice (Peromyscus maniculatus). J. Anm. Ecol. 50, 111–124.CrossRefGoogle Scholar
  54. Taitt, M. J.; Krebs, C. J. (1981): The effect of extra food on small rodent populations: II. Voles (Microtus townsendii). J. Anim. Ecol. 50, 125–137.CrossRefGoogle Scholar
  55. van Horne, B. (1982): Niches of adult and juvenile deer mice (Peromyscus maniculatus) in serai stages of coniferous forest. Ecology 63, 992–1003.CrossRefGoogle Scholar
  56. Webster, A. B.; Brooks, R. J. (1981): Social behavior of Microtus pennsylvanicus in relation to seasonal changes in demography. J. Mammalogy 62, 738–751.CrossRefGoogle Scholar
  57. Wollf, J. O. (1985): The effects of density, food, and interespecific interference on home range size in Peromyscus leucopus and Peromyscus maniculatus. Can. J. Zool. 63, 2657–2662.CrossRefGoogle Scholar

Copyright information

© Deutsche Gesellschaft für Säugetierkunde 2002

Authors and Affiliations

  1. 1.Departamento de Ciencias NaturalesUniversidad Nadonal de Río CuartoCórdobaArgentina

Personalised recommendations