Advertisement

Mammalian Biology

, Volume 67, Issue 2, pp 91–96 | Cite as

Evidence of two genetically deeply divergent species of warthog, Phacochoerus africanus and P. aethiopicus (Artiodactyla: Suiformes) in East Africa

  • E. RandiEmail author
  • J. -P. D’huart
  • V. Lucchini
  • R. Aman
Original investigation

Abstract

Two species of warthogs (Phacochoerus), differing by the number of functional incisors, were described in the Holocene fossil record: the common warthog (P. africanus), widespread in sub-Sahar-an Africa, and the Cape, or desert warthog (P. aethiopicus), which was considered extinct since 1896, but was recently rediscovered in East Africa by morphological analyses. Mitochondrial and single-copy nuclear DNA sequences show that common and desert warthogs belong to two deeply divergent monophyletic lineages, that might have originated in the last part of the Pliocene. The finding of two genetically divergent extant species of warthogs highlights the importance of molecular methods applied to the knowledge and conservation of biodiversity in Africa, to uncover the tempo and mode of its species evolution.

Keywords

Phacochoerus aethiopicus P. africanus mtDNA PRE-1 East Africa 

Nachweis von zwei genetisch stark divergierenden Arten des Warzenschweins, Phacochoerus africanus und P. aethiopicus (Artiodactyla: Suiformes) in Ostafrika

Zusammenfassung

Zwei Arten des Warzenschweins (Phacochoerus), die sich in der ZahL funktioneller Schneidezähne unterscheiden, existieren in holozänen Fossilfunden: das über das Afrika südlich der Sahara weit verbreitete Gemeine Warzenschwein (P. africanus) und das Kap- oder Wüsten-Warzenschwein (P. aethiopicus), das man seit 1896 ausgestorben glaubte aber kürzlich in Ostafrika wiederent-deckte. Sequenzen der mitochondrialen DNA und von Einzelgenen der Kern-DNA zeigen, daß das Gemeine und das Wüsten-Warzenschwein zu zwei stark divergierenden monophyletischen Linien ge-hören, die am Ende des Pliozäns entstanden sein mögen. Die Wiederentdeckung von zwei genetisch unterschiedlichen rezenten Arten des Warzenschweins hebt die Bedeutung molekulaler Methoden für die Kenntnis und Erhaltung der Biodiversität in Afrika hervor.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, S.; de Brujin, M. H. L.; Coul-Son, A. R.; Eperon, I. C.; Sanger, E.; Young, G. (1982): Complete sequence of bovine mitochondrial DNA. Conserved features of the mammalian mitochondrial genome. Nature 37, 312–322.Google Scholar
  2. Chikuni, K.; Mori, Y.; Tabata, T.; Saito, M.; Monma, M.; Kosuglyama, M. (1995): Molecular phylogeny based on the kappa-casein and cytochrome b sequences in the mammalian suborder Ruminantia. J. Mol. Evol. 41, 859–866.CrossRefGoogle Scholar
  3. Demenocal, B. (1995): Plio-Pleistocene African climate. Science 270, 53–59.CrossRefGoogle Scholar
  4. Ewer, R. E (1957): A collection of Phacochoerus aethiopicus teeth from the Kalkbank Middle Stone Age site, central Transvaal. Paleont. Africana 5, 5–20.Google Scholar
  5. Felsenstein, J. (1981): Evolutionary trees from DNA sequences: A maximum likelihood approach. J. Mol. Evol. 17, 368–376.CrossRefGoogle Scholar
  6. Felsenstein, J. (1985): Confidence limits on phytogenies: An approach using the bootstrap. Evolution 39, 83–791.CrossRefGoogle Scholar
  7. Gerloff, U.; Schlotterer, C.; Rassmann, K.; Ram-Bold, L.; Hohman, G.; Fruth, B.; Tautz, D. (1995): Amplification of hypervariable simple sequence repeats (microsatellites) from excre-mental DNA of wild living Bonobos (Pan paniscus). Mol. Ecol. 4, 515–518.CrossRefGoogle Scholar
  8. Grubb, P. (1993a): The Afrotropical Suids Phacochoerus, Hylochoerus, and Potamochoerus. In: Pigs, Peccaries, and Hippos. Status Survey and Conservation Action Plan. Ed. by W. L. R. O-Liver. Gland, Switzerland: IUCN. Pp. 66–75.Google Scholar
  9. Grubb, P. (1993b): Order Artiodactyla. In: Mammal species of the world: Ed. by D. E. Wilson, and D. M. Reeder Washington, London: Smithsonian Institution Press. Pp. 377–414.Google Scholar
  10. Hasegawa, M.; Kishino, H.; Yano, T. (1985): Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J. Mol. Evol. 21, 160–174.CrossRefGoogle Scholar
  11. Hillis, D. M.; Mable, B.; Moritz, C. (1996): Predictions of time from molecular data. In: Molecular Systematics: Ed. by D. M. Hillis, C. Moritz, and K. B. Mable. Sunderland, Massachussetts: Sinauer Associated.Google Scholar
  12. Johns, G. C.; Avise, J. C. (1998): A comparative summary of genetic distances in the vertebrates from the mitochondrial cytochrome b gene. Mol. Biol. Evol. 15, 1481–1490.CrossRefGoogle Scholar
  13. Kingdon, J. (1979): East African Mammals. Vol. III part B. New York: Academic Press.Google Scholar
  14. Kohn, M. H.; Wayne, R. K. (1997): Facts from feces revisited. TREE 12, 223–227.PubMedGoogle Scholar
  15. Li, W-H.; Gojobori, T.; Nei, M. (1981): Pseudo-genes as a paradigm of neutral evolution Nature 292, 237–239.CrossRefGoogle Scholar
  16. Lönnberg, E. (1909): Remarks on some warthog skulls in the British Museum. Proc. Zool. Soc. London 1908, 936–940.Google Scholar
  17. Lydekker, R. (1915): Catalogue of the Uungulate Mammals in the British Museum (Natural History). Vol. 4. London: Trustees of the British Museum.Google Scholar
  18. Nowak, R. M.; Paradiso, J. L. (1983): Mammals of the World. Baltimore, Maryland: Johns Hopkins University Press.Google Scholar
  19. Okumara, N.; Ishiguro, N.; Nakano, M.; Hirai, K.; Matsui, A.; Sahara, M. (1996): Geographic population structure and sequence divergence in the mitochondrial DNA control region of the Japanese wild boar (Sus scrofa leucomystax), with reference to those of domestic pigs. Biochem. Genet. 34, 179–189.CrossRefGoogle Scholar
  20. Randi, E.; Lucchini, V.; Diong, C. H. (1996): Evolutionary genetics of the Suiformes as reconstructed using mtDNA sequencing. J. Mammal. Evol. 3, 163–194.CrossRefGoogle Scholar
  21. Roosevelt, T.; Heller, E. (1922): Life-histories of African Game Animals. Vol. 1. London: John Murray.Google Scholar
  22. Saitou, N.; Nei, M. (1987): The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425.PubMedPubMedCentralGoogle Scholar
  23. Scott, G. R. (1981): Rinderpest. In: Infectious Diseases of Wild Mammals: Ed. by J. W. Davis, L. H. Karstad, and D. O. Trainer. Ames: Iowa State University Press. Pp. 18–30.Google Scholar
  24. Singer, D. S.; Parent, L.J.; Ehrlich, R. (1987): Identification and DNA sequence of an interspersed repetitive DNA element in the genome of the miniature swine. Nucl. Acid Res. 15, 2780.CrossRefGoogle Scholar
  25. Sulandari, S.; Muladno; Harumi, T.; Yanai, S.; Wada, Y.; Yasue, H. (1997): Localization of swine PRE-1 homologues in 13 loci of Phaco-choerus aethiopicus and Tayassu tajacu genomes, and their sequence divergence. Anim. Genet. 28, 210–215.CrossRefGoogle Scholar
  26. Swofford, D. L. (1998): PAUP*: Phylogenetic analysis using parsimony (and other methods), version 4.0b2a. Sunderland, Massachusetts: Sinauer Associated.Google Scholar
  27. Tamura, K.; Nei, M. (1993): Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol. 10, 512–526.Google Scholar
  28. Thompson, J. D.; Gibson, T. J.; Plewniak, E.; Jeanmougin, F.; Higgins, D. G. (1997): The CLUSTAL X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl. Acids Res. 24, 4876–4882.CrossRefGoogle Scholar
  29. Ursing, B. M.; Arnason, U. (1998): The complete mitochondrial DNA sequence of the pig (Sus scrofa). J. Mol. Evol. 47, 302–306.CrossRefGoogle Scholar
  30. Vercammen, P.; Mason, D. R. (1993): The warthogs (Phacochoerus africanus and P. aethiopicus). In: Pigs, Peccaries, and Hippos. Status Survey and Conservation Action Plan. Ed. by W. L. R. OLIVER. Gland, Switzerland: IUCN. Pp. 75-84.Google Scholar

Copyright information

© Deutsche Gesellschaft für Säugetierkunde 2002

Authors and Affiliations

  • E. Randi
    • 1
    Email author
  • J. -P. D’huart
    • 2
  • V. Lucchini
    • 1
  • R. Aman
    • 3
  1. 1.Istituto Nazionale per la Fauna SelvaticaOzzano dell’Emilia (BO)Italy
  2. 2.WWF BelgiumBrusselsBelgium
  3. 3.National Museum of KenyaNairobiKenya

Personalised recommendations