Theory in Biosciences

, Volume 121, Issue 1, pp 101–137 | Cite as

The development of the critical theory of evolution: The scientific career of Wolfgang F. Gutmann

  • Michael GudoEmail author


The critical theory of evolution was developed by a group of scientists working together with Wolfgang F. Gutmann at the Senckenberg-Research-Institute in Frankfurt am Main. Gutmann worked at Senckenberg for 37 years. In this time he presented 247 contributions which are distributed over 47 periodicals and books. The ideas that were developed by Gutmann and his colleagues were innovative and pathbreaking for morphology and evolutionary biology. The large number of his morphological publications is indicative of the wide field that was opened up by the concepts of constructional morphology. As some of his colleagues have suggested, constructional morphology as an engineering approach to the study of organisms (i. e., engineering morphology) may replace the traditional concepts of morphology and anatomy and provides the observational base for the historical reconstruction of evolutionary pathways. Constructional morphology as a quasi-engineering approach can be the morphological pendant to the contemporary molecular approaches to biology, as it can provide the necessary morphological basis for the interpretation of the results of molecular studies in the light of evolution.

Key words

Wolfgang F. Gutmann bibliography critical theory of evolution constructional morphology hydraulic principle quasi-engineering approach 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Batham, E., Pantin, C. (1950a) Inherent activity in the sea-anemone. Journal of Experimental Biology 72: 264–289.Google Scholar
  2. Batham, E. J., Pantin, C. F. A. (1950b) Muscular and hydrostatic action in the sea-anemone Metridium senile. Journal of Experimental Biology 72: 27–54.Google Scholar
  3. Bock, W. J. (1991) Explanations in Konstruktionsmorphologie and evolutionary morphology. In: Schmidt-Kittler, N., Vogel, K. P. (eds.) Constructional morphology and evolution. Springer. Heidelberg. pp. 9–29.Google Scholar
  4. Chapman, G. (1950) Of the movements of worms. Journal of Experimental Biology 27: 29–39.Google Scholar
  5. Chapman, G. (1958) The hydrostatic skeleton in the invertebrates. Biological Reviews of the Cambridge Philosophical Society 33: 338–360.Google Scholar
  6. Chapman, G. (1962) Versatility of Hydraulic Systems. Journal of Experimental Zoology 194: 249–270.CrossRefGoogle Scholar
  7. Clark, R. B. (1962) On the structure and functions of polychaete septa. Proceedings of the zoological Society 138: 543–578.Google Scholar
  8. Clark, R. B. (1964) Dynamics in the metazoan evolution. The origin of the coelom and segments. Clarendon. Oxford.Google Scholar
  9. Clark, R. B., Cowey, J. B. (1958) Factors controlling the change of shape of certain nermertean and turbellarian worms. Journal of Experimental Biology 35: 731–748.Google Scholar
  10. Grasshoff, M. (1997) Wolfgang Friedrich Gutmann †. Natur und Museum 127: 281–284.Google Scholar
  11. Gudo, M. (2002) Structural-functional aspects in the evolution of the lid corals (Rugosa). Palaeontology in press.Google Scholar
  12. Gudo, M., Gutmann, M., Scholz, J. (2002) Concepts of Functional-, Engineering- and Constructional Morphology: Biomechanical approaches to recent and fossil organisms. Senckenbergiana lethaea 82: in press.Google Scholar
  13. Gudo, M., Hubmann, B. (2001) Engineering Morphology of the rugose Argutastrea quadrigemina: new aspects on the reconstruction of soft body behaviour during parricidal budding. Bulletin of the Tohoku University Museum 1: 40–48.Google Scholar
  14. Gutmann, M. (1996) Die Evolutionstheorie und ihr Gegenstand. — Beitrag der Methodischen Philosophie zu einer konstruktiven Theorie der Evolution. Studien zur Theorie der Biologie 1: 332 pp. Verlag für Wissenschaft und Bildung. Berlin.Google Scholar
  15. Gutmann, W. F. (1966) Funktionsmorphologische Beiträge zur Gastraea-Coelomtheorie. Senckenbergiana biologica 47: 225–250.Google Scholar
  16. Gutmann, W. F. (1995) Die Evolution hydraulischer Konstruktion — organismische Wandlung statt altdarwinistischer Anpassung. Kramer. Frankfurt am Main.Google Scholar
  17. Gutmann, W. F., Bonik, K. (1981) Kritische Evolutionstheorie — Ein Beitrag zur Überwindung altdarwinistischer Dogmen. Gerster. Hildesheim.Google Scholar
  18. Kardong, K. V. (1998) Vertebrate: Comparative Anatomy, Function, Evolution. McGraw-Hill. Boston.Google Scholar
  19. Kraus, O. (2000) 40 Jahre Phylogenetisches Symposium. Jahrbuch für Geschichte und Theorie der Biologie.Google Scholar
  20. Krumbein, W. E., Lapo, A. V. (1996) Vernadsky’s Biosphere as a Basis of Geophysiology. In: Lovelock, J., Margulis, L., Saunders, P., Whitfield, M., Goodwin, B., Ho, M.-W. (eds.) Gaia in Action-Science Of The Living Earth. Floris Books. Edinburgh.Google Scholar
  21. Levit, G. S. (1999) Biogeochemistry-Biosphere-Noosphere: The Growth of the theoretical system of Vladimir Ivanovich Vernadsky. Unpublished Dissertation. Oldenburg.Google Scholar
  22. Lovelock, J. (1991) Das GAIA-Prinzip. Artemis & Winkler. München.Google Scholar
  23. Lovelock, J. (1992) Gaia. Scherz-Verlag. München.Google Scholar
  24. Margulis, L. (1999) Die andere Evolution. Spektrum. Heidelberg, Berlin.Google Scholar
  25. Pantin, C. F. A. (1951) Organic design. Advancement of Science 8: 138–150.Google Scholar
  26. Pantin, C. F. A. (1959) Diplooblastic animals. Proceedings of the linnean Society London 171: 1–14.Google Scholar
  27. Pantin, C. F. A. (1961) The cell and the organism: a study in experimental Zoology. In: The cell and the organism. Cambridge.Google Scholar
  28. Peters, D. S. (1970) 1. Phylogenetisches Arbeitsgespräch in der Lochmühle, In: Natur und Museum. Forsch. Inst. Senckenberg. Frankfurt am Main. pp. 236–237.Google Scholar
  29. Remane, A. (1950) Die Entstehung der Metamerie der Wirbellosen. Zoologischer Anzeiger Supplement 16–23.Google Scholar
  30. Remane, A. (1952) Die Grundlagen des natürlichen Systems, der vergleichenden Anatomie und der Phylogenetik, Akademische Verlagsgesellschaft Geest & Portig K.-G. Leipzig.Google Scholar
  31. Remane, A. (1958) Zur Verwandtschaft und Ableitung der niederen Tiere. Zoologischer Anzeiger Supplement 21: 179–196.Google Scholar
  32. Romer, A. S. (1966a) Vergleichende Anatomie der Wirbeltiere. Parey. Hamburg, Berlin.Google Scholar
  33. Romer, A. S. (1966b) Vertebrate Paläontology. University of Chicago Press. Chicago, London.Google Scholar
  34. Siewing, R. (1980) Lehrbuch der Zoologie — Band 1: Allgemeine Zoologie 3. Auflage. Fischer. Stuttgart, New York.Google Scholar
  35. Siewing, R. (1981) Problems and results of research on the phylogenetic origin of Coelomata. Atti dell Accademia naz. Lincei, Mem., Cl Sci fis. mat. nat., Ser. 8.Google Scholar
  36. Siewing, R. (1985) Lehrbuch der Zoologie — Band 2: Systematik 3. Auflage. Fischer. Stuttgart, New York.Google Scholar
  37. Vogel, K. (1991) Concepts of Constructional Morphology. In: Schmidt-Kittler, N., Vogel, K. (eds.) Constructional Morphology and Evolution. Heidelberg.Google Scholar
  38. Vogel, K. P. (1989) Constructional morphology and the reconstruction of phylogeny. Abhandlungen des Naturwissenschaftlichen Vereins 28: 255–264.Google Scholar
  39. Weinich, D. (1997) Ein Vermächtnis für die theoretische Biologie des 21. Jahrhunderts — Nachruf auf Wolfgang F. Gutmann. Würzburger medizinhistorische Mitteilungen 16: 549–574.Google Scholar
  40. Westheide, W., Rieger, R. (1996) Spezielle Zoologie — Erster Teil: Einzeller und Wirbellose Tiere Gustav Fischer. Stuttgart, Jena, New York.Google Scholar

Copyright information

© Urban & Fischer Verlag 2002

Authors and Affiliations

  1. 1.Forschungsinstitut SenckenbergSektion Vergleichende AnatomieFrankfurt am MainGermany

Personalised recommendations