Skip to main content
Log in

Phytoplasma diseases in sub-tropical and tropical Australia

  • Published:
Australasian Plant Pathology Aims and scope Submit manuscript

Abstract

Phytoplasmas are phloem-limited plant pathogens that have been identified in over 1000 plant species worldwide. Outbreaks of the phytoplasma-related disease, papaya dieback, has resulted in 10–100% crop losses in south-east Queensland and Western Australia. Strawberry lethal yellows and green petal disease outbreaks in Queensland have led to 10–50% of strawberry runners being destroyed. Lucerne yellows disease has been reported to cause an annual loss of AU$7 million to the lucerne seed industry. Disease surveys in Australia have increased our understanding of phytoplasma diseases in Australia and these fastidious organisms have been detected in ≈70 native and introduced plant species. The majority of the Australian phytoplasmas are assigned to the 16SrII group, however, a member of the 16SrXII group is more commonly associated with economically important diseases in Australia such as strawberry lethal yellows, papaya dieback and grapevine yellows. These phytoplasma diseases have been diagnosed using PCR primers specific for their 16S rRNA gene. Screening hundreds of samples using PCR is time consuming and expensive so current and future studies are characterising an Australian phytoplasma genome and identifying suitable targets for the development of a more rapid diagnostic test for phytoplasmas. Australasian Plant Pathology Society 2006

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahrens U, Seemüller E (1992) Detection of DNA of plant pathogenic mycoplasmalike organisms by a polymerase chain reaction that amplifies a sequence of the 16S rRNA gene. Phytopathology 82, 823–832.

    Article  Google Scholar 

  • Andersen MT, Beever RE, Gilman AC, Liefting LW, Balmori E, et al. (1998a) Detection of Phormium yellow leaf phytoplasma in New Zealand flax (Phormium tenax) using nested PCRs. Plant Pathology 47, 188–196. doi: 10.1046/j.1365-3059.1998.00209.x

    Article  CAS  Google Scholar 

  • Andersen MT, Longmore J, Liefting LW, Wood GA, Sutherland PW, et al. (1998b) Phormium yellow leaf phytoplasma is associated with strawberry lethal yellows disease in New Zealand. Plant Disease 82, 606–609.

    Article  Google Scholar 

  • Andersen MT, Beever RE, Sutherland PW, Forster RLS (2001) Association of ‘Candidatus Phytoplasma australiense’ with sudden decline of cabbage tree in New Zealand. Plant Disease 85, 462–469.

    Article  Google Scholar 

  • Angelini E, Squizzato F, Lucchetta G, Borgo M (2004) Detection of a phytoplasma associated with grapevine Flavescence dorée in Clematis vitalba. European Journal of Plant Pathology 110, 193–201. doi: 10.1023/B:EJPP.0000015361.95661.37

    Article  CAS  Google Scholar 

  • Barbara DJ, Morton A, Clark MF, Davies DL (2002) Immunodominant membrane proteins from two phytoplasmas in the aster yellows clade (chlorante aster yellows and clover phyllody) are highly divergent in the major hydrophilic region. Microbiology 148, 157–167.

    CAS  PubMed  Google Scholar 

  • Bayliss KL, Saqib M, Dell B, Jones MGK, Hardy GEStJ (2005) First record of ‘Candidatus Phytoplasma australiense’ in Paulownia trees. Australasian Plant Pathology 34, 123–124. doi: 10.1071/AP04089

    Article  Google Scholar 

  • Beanland L, Hoy CW, Miller SA, Nault LR (1999) Leafhopper (Homoptera: Cicadellidae) transmission of aster yellows phytoplasma: does gender matter? Environment and Ecology 28, 1101–1106.

    Google Scholar 

  • Beever RE, Wood GA, Andersen MT, Pennycook SR, Sutherland PW, Forster RLS (2004) “Candidatus Phytoplasma australiens” in Coprosoma robusta in NewZealand. New Zealand Journal of Botany 42, 663–675.

    Article  Google Scholar 

  • Behncken GM (1983) Mollicutes and Rickettsia-like Bacteria. In ‘Plant bacterial diseases’. (Eds PC Fahy, GJ Persley) pp. 229–246. (Academic Press: Sydney, Australia)

    Google Scholar 

  • Behncken GM (1984) Orosius Lotophagorum subsp. ryukyuensis (Hemiptera: Cicadellidae), a new vector of little leaf disease in Australia. Australasian Plant Pathology 13, 35–36. doi: 10.1071/ APP9840035

    Article  Google Scholar 

  • Berg M, Seemüller E (1999) Chromosomal organisation and nucleotide sequence of the genes coding for the elongation factor G and Tu of apple proliferation phytoplasma. Gene 226, 103–109. doi: 10.1016/S0378-1119(98)00552-6

    Article  CAS  PubMed  Google Scholar 

  • Blanche KR, Tran-Nguyen LTT, Gibb KS (2003a) Detection, identification and significance of phytoplasmas in grasses in northern Australia. Plant Pathology 52, 505–512. doi: 10.1046/j.1365-3059.2003.00871.x

    Article  Google Scholar 

  • Blanche KR, Tran-Nguyen L, Gibb KS (2003b) Tests of transmission of cynodon white leaf phytoplasma to sugarcane and maize in northern Australia. Australian Journal of Agricultural Research 54, 423–427. doi: 10.1071/AR02155

    Article  Google Scholar 

  • Blomquist CL, Barabara DJ, Davies DL, Clark MJ, Kirkpatrick BC (2001) An immunodominant membrane protein gene from the Western X-disease phytoplasma is distinct from those of other phytoplasmas. Microbiology 147, 571–580.

    CAS  PubMed  Google Scholar 

  • Borg Z, Braithwaite KS, Whittle PJL, Harding RM, Irey MS, Smith GR (1997) Yellow leaf syndrome in Australia. In ‘Proceedings of the International Society of Sugar Cane Technologists Pathology and Molecular Biology Workshop 1997’. (Durban, South Africa)

  • Bosco D, Minucci C, Boccardo G, Conti M (1997) Differential acquisition of chrysanthemum yellows phytoplasma by three leafhopper species. Entomologia Expermentalis et Applicata 83, 219–224. doi: 10.1023/A:1002906908141

    Article  Google Scholar 

  • Boutareaud A, Danet JL, Garnier M, Saillard C (2004) Disruption of a gene predicted to encode a solute binding protein of an ABC transporter reduces transmission of Spiroplasma citri by the leafhopper Circulifer haematoceps. Applied and Environmental Microbiology 70, 3960–3967. doi: 10.1128/AEM.70.7.3960-3967.2004

    Article  CAS  PubMed  Google Scholar 

  • Bowyer JW (1974) Tomato big bud, legume little leaf, and lucerne witches’ broom: three diseases associated with different Mycoplasma-like organisms in Australia. Australian Journal of Agricultural Research 25, 449–457. doi: 10.1071/AR9740449

    Article  Google Scholar 

  • Bowyer JW, Atherton JG (1970) Observations on the relationship between Mycoplasma-like bodies and host cells of legumes little leaf-diseased plants. Australian Journal of Biological Sciences 23, 115–125.

    Google Scholar 

  • Bowyer JW, Atherton JG (1971) Mycoplasma-like bodies in French bean, dodder, and the leafhopper vector of the legume little leaf agent. Australian Journal of Biological Sciences 24, 717–729.

    Google Scholar 

  • Bowyer JW, Atherton JG, Teakle DS, Ahern GA (1969) Mycoplasmalike bodies in plants affected by legume little leaf, tomato big bud, and lucerne witches’ broom diseases. Australian Journal of Biological Sciences 22, 271–274.

    Google Scholar 

  • Boyce WR, Newhook FJ (1953) Investigations into yellow-leaf disease of Phormium. I. History and symptomatology. New Zealand Journal of Science Technology 34A, 1–11.

    Google Scholar 

  • Carraro L, Osler R, Loi N, Favali MA (1991) Transmission characteristics of the clover phyllody agent by dodder. Journal of Phytopathology 133, 15–22.

    Article  Google Scholar 

  • Chen CT, Kusalwong A (2000) White leaf. In ‘A guide to sugarcane diseases’. (Eds P Rott, RA Bailey, JC Comstock, BJ Croft, AS Saumtally) pp. 231–236. (CIRAD ISSCT: France)

    Google Scholar 

  • Chiykowski LN (1988) Maintenance of yellows-type mycoplasmalike organisms. In ‘Tree mycoplasmas and mycoplasma diseases’. (Ed. C Hiruki) pp. 123–134. (The University of Alberta Press: Alberta, Canada)

    Google Scholar 

  • Cilia V, Lafay B, Christen R (1996) Sequence heterogeneities among 16S ribosomal RNA sequences, and their effect on phylogenetic analyses at the species level. Molecular Biology and Evolution 13, 451–461.

    CAS  PubMed  Google Scholar 

  • Clark MF, Barbara DJ, Davies DL (1983) Production and characterisation of antisera to Spiroplasma citri and clover phyllodyassociated antigens derived from plants. The Annals of Applied Biology 103, 251–259.

    Article  Google Scholar 

  • Cobb NA (1902) Tomato blights. Agricultural Gazette of New South Wales 13, 410–414.

    Google Scholar 

  • Conde B, Ulyatt L, Pitkethley R (1996) Occurrences of Australian papaya dieback, yellow crinkle and other disease or disorders of papaya with similar symptoms recorded from the Northern Territory of Australia. Pacific Association of Tropical Phytopathology Newsletter 14, 2–6.

    Google Scholar 

  • Constable FE, Gibb KS, Moran JR, Wilson YM (1998) Incidence of phytoplasmas associated with yellows, restricted spring growth and late season leaf curl symptoms in grapevines. Australian Grapegrower Winemaker 409, 19–20.

    Google Scholar 

  • Constable FE, Whiting JR, Jones J, Gibb KS, Symons RH (2002) A new grapevine yellows phytoplasma from the Buckland Valley, Victoria, Australia. Vitis 41, 147–154.

    CAS  Google Scholar 

  • Constable FE, Gibb KS, Symons RH (2003) Seasonal distribution of phytoplasmas in Australian grapevines. Plant Pathology 52, 267–276. doi: 10.1046/j.1365-3059.2003.00849.x

    Article  Google Scholar 

  • Cordova I, Jones P, Harrison NA, Oropezac C (2003) In situ detection of phytoplasma DNA in embryos from coconut palms with lethal yellowing disease. Molecular Plant Pathology 4, 99–108. doi: 10.1046/j.1364-3703.2003.00152.x

    Article  CAS  PubMed  Google Scholar 

  • Cousin MT (1995) Phytoplasmaes et phytoplasmasmoses. Agronomie 15, 245–264.

    Article  Google Scholar 

  • Croft BJ, Smith GR (1996) Major diseases affecting sugarcane production in Australia and recent experiences in sugarcane diseases in Quarantine. In ‘Sugarcane germplasm conservation and exchange’, ACIAR Proceedings No. 67. (Eds BJ Croft, CM Piggin, ES Wallis, DM Hogarth) pp. 55–58. (Australian Centre for International Agricultural Research: Canberra)

    Google Scholar 

  • Cronjé CPR, Tymon AM, Jones P, Bailey RA (1998) Association of a phytoplasma with yellow leaf syndrome of sugarcane in South Africa. The Annals of Applied Biology 133, 177–186.

    Article  Google Scholar 

  • Davis RE, Sinclair WA (1998) Phytoplasma identity and disease etiology. Phytopathology 88, 1372–1376.

    Article  CAS  PubMed  Google Scholar 

  • Davis RE, Dally EL, Gundersen DE, Lee I-M, Habili N (1997a) “Candidatus Phytoplasma australiense,” a new phytoplasma taxon associated with Australian grapevine yellows. International Journal of Systematic Bacteriology 47, 262–269.

    Article  CAS  PubMed  Google Scholar 

  • Davis RI, Schneider B, Gibb KS (1997b) Detection and differentiation of phytoplasmas in Australia. Australian Journal of Agricultural Research 48, 535–544. doi: 10.1071/A96114

    Article  Google Scholar 

  • Davis RI, Jacobson SC, De La Rue SJ, Tran-Nguyen L, Gunua TG, Rahamma S (2003) Phytoplasma disease surveys in the extreme north of Queensland, Australia, and the island of New Guinea. Australasian Plant Pathology 32, 269–277. doi: 10.1071/AP03020

    Article  Google Scholar 

  • De La Rue SJ, Schneider B, Gibb KS (1999) Genetic variability in phytoplasmas associated with papaya yellow crinkle and papaya mosaic diseases in Queensland and the Northern Territory. Australasian Plant Pathology 28, 108–114. doi: 10.1071/ AP99019

    Article  Google Scholar 

  • De La Rue SJ, Padovan A, Gibb K (2001) Stylosanthes is a host for several phytoplasmas, one of which shows unique 16S-23S intergenic spacer region heterogeneity. Journal of Phytopathology 149, 613–619. doi: 10.1046/j.1439-0434. 2001.00683.x

    Article  Google Scholar 

  • De La Rue SJ, Hopkinson R, Gibb KS (2002) Assessment of Stylosanthes seed yield reduction caused by phytoplasma-associated diseases. Australian Journal of Experimental Agriculture 42, 1053–1056. doi: 10.1071/EA02049

    Article  Google Scholar 

  • De La Rue SJ, Hopkinson R, Foster S, Gibb KS (2003) Phytoplasma host range and symptom expression in pasture legume Stylosanthes. Field Crop Research 84, 327–334. doi: 10.1016/S0378-4290(03)00099-6

    Article  Google Scholar 

  • Deng S, Hiruki C (1991a) Amplification of 16S rRNA genes from culturable and nonculturable mollicutes. Journal of Microbiological Methods 14, 53–61. doi: 10.1016/0167-7012(91)90007-D

    Article  CAS  Google Scholar 

  • Deng S, Hiruki C (1991b) Genetic relatedness between two nonculturable mycoplasmalike organisms revealed by nuclei acid hybridisation and polymerase chain reaction. Phytopathology 81, 1475–1479.

    Article  Google Scholar 

  • Doi YM, Ternaka M, Yora K, Asuyama H (1967) Mycoplasma or PLTgroup-like microorganisms found in the phloem elements of plants infected with mulberry dwarf, potato witches’ broom, aster yellows and Paulownia witches’ broom. Annals of the Phytopathological Society of Japan 33, 259–266.

    Google Scholar 

  • Edwards EG (1935) Witches’ broom. A new virus of lucerne. Journal of the Australian Institute of Agricultural Science 1, 31–32.

    Google Scholar 

  • Elder RJ, Milne JR, Reid DJ, Guthrie JN, Persley DM (2002) Temporal incidence of three phytoplasma-associated diseases of Carica papaya and their potential hemipteran vectors in central and south-east Queensland. Australasian Plant Pathology 31, 165–176. doi: 10.1071/AP02003

    Article  Google Scholar 

  • Fletcher J, Wayadande A, Melcher U, Ye F (1998) The phytopathogenic mollicute insect vector interface: a closer look. Phytopathology 88, 1351–1358.

    Article  CAS  PubMed  Google Scholar 

  • Fox MD (1999) Present environmental influences on the Australian flora. In ‘Flora of Australia Vol. 1: Introduction’. 2nd edn. (Eds AE Orchard, HS Thompson) pp. 205–241. (ABRS/CSIRO Australia: Melbourne)

    Google Scholar 

  • Garcia-Salazar C, Whalon ME, Rahardja U (1991) Temperaturedependent pathogenicity of the X-disease mycoplasma-like organism to its vector, Paraphlepsis irroratus (Homoptera: Cicadellidae). Environmental Entomology 20, 179–184.

    Google Scholar 

  • Garnier M, Foissac X, Gaurivaud P, Laigret F, Renaudin J, et al. (2001) Mycoplasmas, plants, insect vectors: a matrimonial triangle. Comptes Rendus de l’Academie des Sciences — Series III-Sciences de La Vie 324, 923–928. doi: 10.1016/S0764-4469(01)01372-5

    Article  CAS  Google Scholar 

  • Gibb KS, Padovan AC, Mogen BD (1995) Studies on sweet potato littleleaf phytoplasma detected in sweet potato and other plant species growing in northern Australia. Phytopathology 85, 169–174.

    Article  Google Scholar 

  • Gibb KS, Persley DM, Schneider B, Thomas JE (1996) Phytoplasmas associated with papaya diseases in Australia. Plant Disease 80, 174–178.

    Article  Google Scholar 

  • Gibb KS, Schneider B, Padovan AC (1998) Differential detection and genetic relatedness of phytoplasmas in papaya. Plant Pathology 47, 325–332. doi: 10.1046/j.1365-3059.1998.00246.x

    Article  CAS  Google Scholar 

  • Gibb KS, Constable F, Moran J, Padovan AC (1999) Phytoplasmas in Australian grapevines — detection, differentiation and associated diseases. Vitis 38, 107–114.

    Google Scholar 

  • Gibb KS, Streten C, Tran-Nguyen L, Davison E (2003a) Carrots with hair roots are associated with a phytoplasma and a new bacterialike organism. In ‘Proceedings 8th International Congress of Plant Pathology. Vol. 2’. (Christchurch, New Zealand)

  • Gibb KS, Tran-Nguyen LTT, Randles JW (2003b) A new phytoplasma detected in the South Australian native perennial shrub, Allocasuarina muelleriana. The Annals of Applied Biology 142, 357–364.

    Article  CAS  Google Scholar 

  • Glennie JD, Chapman KR (1976) A review of dieback — a disorder of the papaw (Carica papaya L.) in Queensland. Queensland Journal of Agricultural and Animal Sciences 33, 177–188.

    Google Scholar 

  • Gowanlock DH, Greber RS, Behncken GM, Finlay J (1976) Electron microscopy of mycoplasma-like bodies in several crop species. Australasian Plant Pathology Society News 5(suppl.), 223. [Abstract]

    Google Scholar 

  • Gowanlock DH, Ogle HJ, Gibb KS (1998) Phytoplasma associated with virescence in an epiphytic orchid in Australia. Australasian Plant Pathology 27, 265–268. doi: 10.1071/AP98031

    Article  Google Scholar 

  • Greber RS (1966) Identification of the virus causing papaw yellow crinkle with tomato big bud virus by transmission tests. Queensland Journal of Agricultural and Animal Sciences 23, 147–153.

    Google Scholar 

  • Greber RS (1987) Strawberry Rickettsia yellows and mycoplasma yellows. In ‘Virus diseases of small fruit’. (Ed. RH Converse) pp. 41–45. (United States Department of Agriculture)

  • Greber RS, Gowanlock DH (1979) Rickettsia-like andmycoplasma-like organisms associated with two yellow-type diseases of strawberries in Queensland. Australian Journal of Agricultural Research 30, 1101–1109. doi: 10.1071/AR9791101

    Article  Google Scholar 

  • Gundersen DE, Lee I-M, Rehner SA, Davis RE, Kingsbury DT (1994) Phylogeny of mycoplasmalike organisms (phytoplasmas): a basis for their classification. Journal of Bacteriology 176, 5244–5254.

    CAS  PubMed  Google Scholar 

  • Gundersen DE, Lee I-M, Schaff DA, Harrison CJ, Davis RE, Kingsbury DT (1996) Genomic diversity and differentiation among phytoplasma strains in 16S rRNA groups I (aster yellows and related phytoplasmas) and III (X-disease and related phytoplasmas). International Journal of Systematic Bacteriology 46, 64–75.

    Article  CAS  PubMed  Google Scholar 

  • Guthrie JN, White DT, Walsh KB, Scott PT (1998) Epidemiology of phytoplasma-associated papaya diseases in Queensland, Australia. Plant Disease 82, 1107–1111.

    Article  Google Scholar 

  • Guthrie JN, Walsh KB, Scott PT, Rasmussen TS (2001) The phytopathology of Australian papaya dieback: a proposed role for the phytoplasma. Physiological and Molecular Plant Pathology 58, 23–30. doi: 10.1006/pmpp.2000.0311

    Article  Google Scholar 

  • Helson GAH (1951) The transmission of witches’ broom virus disease of lucerne by the common brown leafhopper, Orosius argentatus (Evans). Australian Journal of Scientific Research 4, 115–124.

    CAS  PubMed  Google Scholar 

  • Hibben CR, Wolanski B (1970) Dodder transmission of a Mycoplasma from ash witches’-broom. Phytopathology 61, 151–156.

    Article  Google Scholar 

  • Hill AV (1943) Insect transmission and host plants of virescence (big bud of tomato). Journal of the Council for Scientific and Industrial Research Australia 16, 85–90.

    Google Scholar 

  • Hopkinson JM, Walker B (1984) Seed production of Stylosanthes cultivars in Australia. In ‘The biology and agronomy of Stylosanthes’. (Eds HM Stace, LA Edye) pp. 433–449. (Academic Press: Sydney)

    Google Scholar 

  • Hutton EM, Grylls NE (1956) Legume ‘little leaf ’, a virus disease of subtropical pasture species. Australian Journal of Agricultural Research 7, 85–97. doi: 10.1071/AR9560085

    Article  Google Scholar 

  • International Committee Systematic Bacteriology Subcommittee Taxonomy Mollicutes (1993) Minutes of the interim meetings, 1 and 2 August 1992, Ames, Iowa. International Journal of Systematic Bacteriology 43, 394–397.

    Article  Google Scholar 

  • International Committee Systematic Bacteriology Subcommittee Taxonomy Mollicutes (1997) Minutes of the interim meetings, 12 and 18 July 1996, Orlando, Florida, USA. International Journal of Systematic Bacteriology 47, 911–914.

    Article  Google Scholar 

  • IRPCM Phytoplasma/Spiroplasma Working Team—Phytoplasma taxonomy group (2004) ‘Candidatus Phytoplasma’, a taxon for the wall-less, non-helical prokaryotes that colonize plant phloem and insects. International Journal of Systematic and Evolutionary Microbiology 54, 1243–1255. doi: 10.1099/ijs.0.02854-0

    Article  CAS  Google Scholar 

  • Ishiie T, Doi Y, Asuyama H (1967) Suppressive effects of antibiotics of tetracycline group on symptom development of mulberry dwarf disease. Annals of the Phytopathological Society of Japan 33, 267–275.

    CAS  Google Scholar 

  • Jarausch W, Saillard C, Dosba F, Bové JM (1994) Differentiation of mycoplasmalike organisms (MLOs) in European fruit trees by PCR using specific primers derived from the sequence of a chromosomal fragment of the apple proliferation MLO. Applied and Environmental Microbiology 60, 2916–2923.

    CAS  PubMed  Google Scholar 

  • Jarausch W, Saillard C, Helliot B, Garnier M, Dosba F (2000) Genetic variability of apple proliferation phytoplasmas as determined by PCR-RFLP and sequencing of a non-ribosomal fragment. Molecular and Cellular Probes 14, 17–24. doi: 10.1006/mcpr.1999.0279

    Article  CAS  PubMed  Google Scholar 

  • Jomantiene R, Davis RE, Maas J, Dally EL (1998) Classification of new phytoplasmas associated with diseases of strawberry in Florida, based on analysis of 16S rRNA and ribosomal protein gene operon sequences. International Journal of Systematic Bacteriology 48, 269–277.

    Article  CAS  PubMed  Google Scholar 

  • Jung H-Y, Miyata S-I, Oshima K, Kakizawa S, Nishigawa H, et al. (2003) First complete nucleotide sequence and heterologous gene organisation of the two rRNA operons in the phytoplasma genome. DNA and Cell Biology 22, 209–215. doi: 10.1089/104454903321655837

    Article  CAS  PubMed  Google Scholar 

  • Kirkpatrick BC (1989) Strategies for characterising plant pathogenic mycoplasma-like organisms and their effects on plants. In ‘Plant-microbe interactions. Molecular and Genetic perspectives’. (Eds T Kosuge, EW Nester) pp. 241–293. (McGraw Hill Publishing: New York)

    Google Scholar 

  • Kirkpatrick BC, Smart CD (1995) Phytoplasmas: Can phylogeny provide means to understanding pathogenicity? In ‘Advances in Botanical Research’. (Eds JH Andrews, IC Tommerup) pp. 188–192. (Academic Press: New York)

    Google Scholar 

  • Kirkpatrick BC, Stenger DC, Morris TJ, Purcell AH (1987) Cloning and detection of DNA from a nonculturable plant pathogenic mycoplasma-like organism. Science 238, 197–200.

    Article  CAS  PubMed  Google Scholar 

  • Kollar A, Seemüller E (1989) Base composition of the DNA mycoplasma-like organisms associated with various plant diseases. Phytopathology 127, 177–186.

    Article  CAS  Google Scholar 

  • Kuske CR, Kirkpatrick BC (1992) Phylogenetic relationships between western aster yellows mycoplasmalike organism and other prokaryotes established by 16S rRNA gene sequences. International Journal of Systematic Bacteriology 42, 226–233.

    Article  CAS  PubMed  Google Scholar 

  • Lee I-M, Davis RE (1988) Detection and investigation of genetic relatedness among aster yellows and other mycoplasmalike organisms by using cloned DNA and RNA probes. Molecular Plant-Microbe Interactions 1, 303–310.

    Article  Google Scholar 

  • Lee I-M, Davis RE (1992) Mycoplasma which infect plant and insects. In ‘Mycoplasmas: Molecular biology and pathogenesis’. (Eds J Maniloff, RN McElhaney, LR Finch, JB Baseman) pp. 379–390. (American Society for Microbiology: Washington, DC)

    Google Scholar 

  • Lee I-M, Davis RE (1993) Differentiation of strains in the aster yellows mycoplasmalike organisms strain cluster by serological assay with monoclonal antibodies. Plant Disease 77, 815–817.

    Article  Google Scholar 

  • Lee I-M, Davis RE, Hiruki C (1991) Genetic relatedness among clover proliferation mycoplasmalike organisms (MLOs) and other MLOs investigated by nuclei acid hybridisation and restriction fragment length polymorphism analyses. Applied and Environmental Microbiology 57, 3565–3569.

    CAS  PubMed  Google Scholar 

  • Lee I-M, Hammond RW, Davis RE, Gundersen DE (1993) Universal amplification and analysis of pathogen 16S rDNA for classification and identification of mycoplasmalike organisms. Phytopathology 83, 834–842.

    Article  CAS  Google Scholar 

  • Lee I-M, Gundersen DE, Hammond RW, Davis RE (1994) Use of mycoplasmalike organism (MLO) group-specific oligonucleotide primers for nested-PCR assays to detect mixed-infections in a single host plant. Phytopathology 84, 559–566.

    Article  CAS  Google Scholar 

  • Lee I-M, Gundersen-Rindal DE, Davis RE, Bartoszyk IM (1998) Revised classification scheme of phytoplasmas based on RFLP analyses of 16S rRNA and ribosomal protein gene sequences. International Journal of Systematic Bacteriology 48, 1153–1169.

    Article  CAS  Google Scholar 

  • Lee I-M, Davis RE, Gundersen-Rindal DE (2000) Phytoplasmas: Phytopathogenic mollicutes. Annual Review of Microbiology 54, 221–255. doi: 10.1146/annurev.micro.54.1.221

    Article  CAS  PubMed  Google Scholar 

  • Lefol C, Caudwell A, Lherminier J, Larrue J (1993) Attachment of the Flavescence doree pathogen (MLO) to leafhopper vectors and other insects. The Annals of Applied Biology 123, 611–622.

    Article  Google Scholar 

  • Lefol C, Lherminier J, Boudon-Padieu E, Meignoz R, Larrue J, Louis C, Roche A-C, Caudwell A (1995) Presence of attachment sites accounting for recognition between the flavescence dorée MLO and its leafhopper vector. IOM Letters 3, 282–283.

    Google Scholar 

  • Le Gall F, Bové J-M, Garnier M (1998) Engineering of a singlechain variable-fragment (scFv) antibody specific for the stolbur phytoplasma (Mollicute) and its expression in Escherichia coli and tobacco plants. Applied and Environmental Microbiology 64, 4566–4572.

    PubMed  Google Scholar 

  • Lepka P, Stitt M, Moll E, Seemüller E (1999) Effect of phytoplasmal infection on concentration and translocation of carbohydrates and amino acids in periwinkle and tobacco. Physiological and Molecular Plant Pathology 55, 59–68. doi: 10.1006/pmpp.1999.0202

    Article  CAS  Google Scholar 

  • Liefting LW, Andersen MT, Beever RE, Gardner RC, Forster RLS (1996) Sequence heterogeneity in the two 16S rRNA genes of Phormium yellow leaf phytoplasma. Applied and Environmental Microbiology 62, 3133–3139.

    CAS  PubMed  Google Scholar 

  • Liefting LW, Beever RE, Winks CJ, Pearson MN, Forster RLS (1997) Planthopper transmission of Phormium yellow leaf phytoplasma. Australasian Plant Pathology 26, 148–154. doi: 10.1071/ AP97025

    Article  Google Scholar 

  • Liefting LW, Padovan AC, Gibb KS, Beever RE, Andersen MT, Newcomb RD, Beck DL, Forster RLS (1998) ‘Candidatus Phytoplasma australiense’ is the phytoplasma associated with Australian grapevine yellows, papaya dieback and Phormium yellow leaf diseases. European Journal of Plant Pathology 104, 619–623. doi: 10.1023/A:1008693904427

    Article  Google Scholar 

  • Lim P-O, Sears BB (1991) DNA sequence of the ribosomal protein genes rp12 and rps19 from a plant-pathogenic mycoplasmalike organism. FEMS Microbiology Letters 84, 71–74. doi: 10.1016/0378-1097(91)90397-S

    Article  CAS  Google Scholar 

  • Lim P-O, Sears BB (1992) Evolutionary relationships of a plantpathogenic mycoplasmalike organism and Acholeplasma laidlawii deduced from two ribosomal protein gene sequences. Journal of Bacteriology 174, 2606–2611.

    CAS  PubMed  Google Scholar 

  • Lin CP, Chen TA (1985) Monoclonal antibodies against the aster yellows agent. Science 227, 1233–1235.

    Article  CAS  PubMed  Google Scholar 

  • Linacre E, Hobbs J (1977) ‘The Australian climatic environment.’ (John Wiley and Sons: Milton, Queensland)

    Google Scholar 

  • Liu B, White DT, Walsh KB, Scott PT (1996) Detection of phytoplasmas in dieback, yellow crinkle and mosaic diseases of papaya using polymerase chain reaction techniques. Australian Journal of Agricultural Research 47, 387–394. doi: 10.1071/AR9960387

    Article  CAS  Google Scholar 

  • Lockhart BEL, Irey MJ, Comstock JC (1996) Sugarcane bacilliform virus, sugarcane mild mosaic virus and sugarcane yellow leaf syndrome. In ‘Sugarcane germplasm conservation and exchange’. ACIAR Proceedings No. 67. (Eds BJ Croft, CM Piggin, ES Wallis, DM Hogarth) pp. 108–112. (Australian Centre for International Agricultural Research: Canberra)

    Google Scholar 

  • Loi N, Ermacora P, Carraro L, Osler R, Chen TA (2002) Production of monoclonal antibodies against apple proliferation phytoplasma and their use in serological detection. European Journal of Plant Pathology 108, 81–86. doi: 10.1023/A:1013901706383

    Article  CAS  Google Scholar 

  • Ludwig W, Schleifer K-H (1999) Phylogeny of Bacteria beyond the 16S rRNA standard. ASM News 65, 752–757.

    Google Scholar 

  • McCoy RE, Caudwell A, Chang CJ, Chen TA, Chiykowski LN, et al. (1989) Plant diseases associated with mycoplasma-like organisms. In ‘The mycoplasmas. Volume V. Spiroplasmas, acholeplasmas and mycoplasmas of plants and arthropods’. (Eds RF Whitcomb, JG Tulley) pp. 545–640. (Academic Press: New York)

    Google Scholar 

  • Marcone C, Neimark H, Ragozzino A, Lauer U, Seemüller E (1999) Chromosome sizes of phytoplasmas composing major phylogenetic groups and subgroups. Phytopathology 89, 805–810.

    Article  CAS  PubMed  Google Scholar 

  • Marcone C, Lee I-M, Davis RE, Ragozzino A, Seemüller E (2000) Classification of aster yellows-group phytoplasmas based on combined analyses of rRNA and tuf gene sequence. International Journal of Systematic and Evolutionary Microbiology 50, 1703–1713.

    CAS  PubMed  Google Scholar 

  • Morton A, Davies DL, Blomquist CL, Barbara DJ (2003) Characterisation of homologues of the apple proliferation immunodominant membrane protein gene from three related phytoplasmas. Molecular Plant Pathology 4, 109–114. doi: 10.1046/j.1364-3703.2003.00155.x

    Article  CAS  PubMed  Google Scholar 

  • Mpunami AA, Tymon A, Jones P, Dickinson MJ (1999) Genetic diversity in the coconut lethal yellowing disease phytoplasmas of East Africa. Plant Pathology 48, 109–114. doi: 10.1046/j.1365-3059.1999.00314.x

    Article  CAS  Google Scholar 

  • Nakashima K, Chaleeprom W, Wongkaew P, Sirithorn P (1994) Detection of mycoplasma-like organisms associated with white leaf disease of sugarcane in Thailand using DNA probes. Japan International Research Center for Agricultural Sciences 1, 5767.

    Google Scholar 

  • Neimark HC, Kirkpatrick BC (1993) Isolation and characterisation of full-length chromosomes from non-culturable plant pathogenic mycoplasmalike organisms. Molecular Microbiology 7, 21–28.

    Article  CAS  PubMed  Google Scholar 

  • Padovan AC, Gibb KS (2001) Epidemiology of phytoplasma diseases in papaya in Northern Australia. Journal of Phytopathology 149, 649–658. doi: 10.1046/j.1439-0434.2001.00688.x

    Article  Google Scholar 

  • Padovan AC, Gibb KS, Bertaccini A, Vibio M, Bonfiglioli RE, Magarey PA, Sears BB (1995) Molecular detection of the Australian Grapevine Yellows phytoplasma and comparison with grapevine yellows phytoplasmas from Italy. Australian Journal of Grape and Wine Research 1, 25–31.

    Article  CAS  Google Scholar 

  • Padovan AC, Gibb KS, Daire X, Boudon-Pafieu E (1996) A comparison of the phytoplasma associated with Australian grapevine yellows to other phytoplasmas in grapevine. Vitis 35, 189–194.

    CAS  Google Scholar 

  • Padovan AC, Gibb KS, Persley DM (1998) Phytoplasma associated with diseases of strawberry. Australasian Plant Pathology 27, 280. doi: 10.1071/AP98036

    Article  Google Scholar 

  • Padovan AC, Firrao G, Schneider B, Gibb KS (2000a) Chromosome mapping of the sweet potato little leaf phytoplasma reveals genome heterogeneity within the phytoplasmas. Microbiology 146, 893–902.

    CAS  PubMed  Google Scholar 

  • Padovan AC, Gibb KS, Persley D (2000b) Association of ‘Candidatus Phytoplasma australiense’ with green petal and lethal yellows disease in strawberry. Plant Pathology 49, 362–369. doi: 10.1046/j.1365-3059.2000.00461.x

    Article  Google Scholar 

  • Palermo S, Arzone A, Bosco D (2001) Vector-pathogen-host plant relationships of chrysanthemum yellows (CY) phytoplasma and the vector leafhoppers Macrosteles quadripunctulatus and Euscelidius variegatus. Entomologia Experimentalis et Applicata 99, 347–354. doi: 10.1023/A:1019263000503

    Article  Google Scholar 

  • Pilkington LJ, Gibb KS, Gurr GM, Fletcher MJ, Nikandrow A, et al. (2003) Detection and identification of a phytoplasma from lucerne with Australian lucerne yellows disease. Plant Pathology 52, 754–762. doi: 10.1111/j.1365-3059.2003.00934.x

    Article  CAS  Google Scholar 

  • Pilkington LJ, Gurr GM, Fletcher MJ, Elliot E, Nikandrow A, Nicol HI (2004a) Reducing the immigration of suspected leafhopper vectors and severity of Australian lucerne yellows disease. Australian Journal of Experimental Agriculture 44, 983–992. doi: 10.1071/EA03162

    Article  Google Scholar 

  • Pilkington LJ, Gurr GM, Fletcher MJ, Nikandrow A, Elliot E (2004b) Vector status of three leafhopper species for Australian lucerne yellows phytoplasma. Australian Journal of Entomology 43, 366–373. doi: 10.1111/j.1440-6055.2004.00419.x

    Article  Google Scholar 

  • Purcell AH (1985) The ecology of bacterial and mycoplasma plant diseases spread by leafhoppers and planthoppers. In ‘The leafhoppers and planthoppers’. (Eds LR Nault, JG Rodriguez) pp. 351–380. (John Wiley & Sons: New York)

    Google Scholar 

  • Schneider B, Seemüller E (1994) Presence of two sets of ribosomal genes in phytopathologenic mollicutes. Applied and Environmental Microbiology 60, 3409–3412.

    CAS  PubMed  Google Scholar 

  • Schneider B, Gibb KS (1997) Detection of phytoplasma in declining pears in southern Australia. Plant Disease 81, 254–258.

    Article  Google Scholar 

  • Schneider B, Ahrens U, Kirkpatrick BC, Seemüller E (1993) Classification of plant-pathogenic mycoplasma-like organisms using restriction-site analysis of PCR-amplified 16S rDNA. Journal of General Microbiology 139, 519–527.

    Article  CAS  Google Scholar 

  • Schneider B, Cousin MT, Klinkong S, Seemüller E (1995) Taxonomic relatedness and phylogenetic positions of phytoplasmas associated with diseases of faba bean, sunhemp, soybean and eggplant. Journal of Plant Diseases and Protection 102, 225–232.

    Google Scholar 

  • Schneider B, Gibb KS, Seemüller E (1997) Sequence and RFLP analysis of the elongation factor Tu gene used in differentiation and classification of phytoplasmas. Microbiology 143, 3381–3389.

    Article  CAS  PubMed  Google Scholar 

  • Schneider B, Gibb KS, Padovan AC, Davis RI, De La Rue S (1999a) Comparison and characterisation of tomato big bud and sweet potato little leaf-group phytoplasmas. Journal of Phytopathology 147, 31–40. doi: 10.1046/j.1439-0434.1999. 147001031.x

    Google Scholar 

  • Schneider B, Padovan A, De La Rue S, Eichner R, Davis R, et al. (1999b) Detection and differentiation of phytoplasmas in Australia: an update. Australian Journal of Agricultural Research 50, 333–342. doi: 10.1071/A98106

    Article  Google Scholar 

  • Sears BB, Kirkpatrick BC (1994) Unveiling the evolutionary relationships of plant-pathogenic mycoplasmalike organisms. ASM News 60, 307–312.

    Google Scholar 

  • Seemüller E, Schneider B, Maürer R, Ahrens U, Daire X, Kison H, Lorenz KH, Firrao G, Avinent L, Sears BB (1994) Phylogenetic classification of phytopathogenic mollicutes by sequence analysis of 16S ribosomal DNA. International Journal of Systematic Bacteriology 44, 440–446.

    Article  PubMed  Google Scholar 

  • Seemüller E, Marcone C, Lauer U, Ragozzino A, Goschl M (1998) Current status of molecular classification of the phytoplasmas. Journal of Plant Pathology 80, 3–26.

    Google Scholar 

  • Sdoodee R, Schneider B, Padovan A, Gibb K (1999) Detection and genetic relatedness of phytoplasmas associated with plant diseases in Thailand. Journal of Biochemistry, Molecular Biology, and Biophysics 3, 13342.

    Google Scholar 

  • Siddique ABM, Guthrie JN, Walsh KB, White DT, Scott PT (1998) Histopathology and within-plant distribution of the phytoplasma associated with Australian papaya dieback. Plant Disease 82, 1112–1120.

    Article  Google Scholar 

  • Simmonds JH (1965) Pawpaw diseases. Queensland Agricultural Journal 91, 666–677.

    Google Scholar 

  • Streten C, Conde B, Herrington M, Moulden J, Gibb K (2005a) Candidatus Phytoplasma australiense is associated with pumpkin yellow leaf curl disease in Queensland, Western Australia and the Northern Territory. Australasian Plant Pathology 34, 103–105. doi: 10.1071/AP04077

    Article  Google Scholar 

  • Streten C, Gibb KS (2005) Genetic variation in Candidatus Phytoplasma australiense. Plant Pathology 54, 8–14. doi: 10.1111/j.1365-3059.2005.01113.x

    Article  CAS  Google Scholar 

  • Streten C, Herrington ME, Hutton DG, Persley DM, Waite GK, Gibb KS (2005b) Plant hosts of the phytoplasmas and rickettsialike-organisms associated with strawberry lethal yellows and green petal disease. Australasian Plant Pathology 34, 165–173. doi: 10.1071/AP05014

    Article  Google Scholar 

  • Streten C, Waite GK, Herrington ME, Hutton DG, Persley DM, Gibb KS (2005c) Association and distribution of a rickettsialike-organism and a phytoplasma associated with diseases in Australian strawberries. Australasian Plant Pathology 34, 157–164. doi: 10.1071/AP05007

    Article  Google Scholar 

  • Taylor RAJ (1985) Migratory behaviour in Auchenorrhyncha. In ‘The leafhoppers and planthoppers’. (Eds LR Nault, JG Rodriguez) pp. 259–288. (John Wiley & Sons: New York)

    Google Scholar 

  • Tran-Nguyen L, Blanche KR, Egan B, Gibb KS (2000) Diversity of phytoplasmas in northern Australian sugarcane and other grasses. Plant Pathology 49, 666–679. doi: 10.1046/j.1365-3059.2000.00498.x

    Article  Google Scholar 

  • Tran-Nguyen LTT, Persley DM, Gibb KS (2003) First report of phytoplasma disease in capsicum, celery and chicory in Queensland, Australia. Australasian Plant Pathology 32, 559–560. doi: 10.1071/AP03055

    Article  Google Scholar 

  • Viswanathan R (2000) Grassy shoot. In ‘A guide to sugarcane diseases’. (Eds P Rott, RA Bailey, JC Comstock, BJ Croft, AS Saumtally) pp. 215–220. (CIRAD ISSCT: France)

    Google Scholar 

  • White DT, Billington SJ, Walsh KB, Scott PT (1997) DNA sequence analysis supports the association of phytoplasmas with papaya (Carica papaya) dieback, yellow crinkle and mosaic. Australasian Plant Pathology 26, 28–36. doi: 10.1071/AP97005

    Article  Google Scholar 

  • White DT, Blackall LL, Scott PT, Walsh KB (1998) Phylogenetic positions of phytoplasmas associated with dieback, yellow crinkle and mosaic diseases of papaya, and their proposed inclusion in ‘Candidatus Phytoplasma australiense’ and a new taxon, ‘Candidatus Phytoplasma australasia’. International Journal of Systematic Bacteriology 48, 941–951.

    Article  CAS  PubMed  Google Scholar 

  • Wilson D, Blanche KR, Gibb KS (2001) Phytoplasmas and disease symptoms in crops and weeds in the semi-arid tropics of the Northern Territory, Australia. Australasian Plant Pathology 30, 159–163. doi: 10.1071/AP01015

    Article  Google Scholar 

  • Woese CR (1987) Bacterial evolution. Microbiological Reviews 51, 221–271.

    CAS  PubMed  Google Scholar 

  • Wongkaew P, Hanboosong Y, Sirithorn P, Choosai C, Boonkrong S, et al. (1997) Differentiation of phytoplasmas associated with sugarcane and gramineous weed white leaf disease and sugarcane grassy shoot disease by RFLP and sequencing. Theoretical and Applied Genetics 95, 660–663. doi: 10.1007/s001220050609

    Article  CAS  Google Scholar 

  • Wood GA, Andersen MT, Forster RLS, Braithwaite M, Hall HK (1999) History of Boysenberry and Youngberry in New Zealand in relation to their problems with Boysenberry decline, the association of a fungal pathogen, and possibly a phytoplasma, with this disease. New Zealand Journal of Crop and Horticulture Science 27, 281–295.

    Article  Google Scholar 

  • Zreik L, Carle P, Bove JM, Garnier M (1995) Characterisation of the mycoplasmalike organisms associated with witches’ broom disease of lime and proposition of ‘Candidatus Phytoplasma aurantifolia’. International Journal of Systematic Bacteriology 45, 449–453.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Streten, C., Gibb, K.S. Phytoplasma diseases in sub-tropical and tropical Australia. Australasian Plant Pathology 35, 129–146 (2006). https://doi.org/10.1071/AP06004

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1071/AP06004

Keywords

Navigation