Australasian Plant Pathology

, Volume 39, Issue 5, pp 383–393 | Cite as

Genetic diversity in the Eucalyptus stem pathogen Teratosphaeria zuluensis

  • M. N. Cortinas
  • I. Barnes
  • M. J. Wingfield
  • B. D. Wingfield
Article

Abstract

Coniothyrium canker caused by the fungal pathogen Teratosphaeria (= Coniothyrium) zuluensis is one of the most important diseases affecting plantation-grown Eucalyptus trees. Little is known regarding the pathogen and this study consequently considers the genetic diversity and population structure of T. zuluensis. Eleven microsatellites markers, of which six were developed in this study, were used to analyse two temporally separated populations of T. zuluensis from South Africa, one population from Malawi and one population from China. Results showed that the populations of T. zuluensis have a moderate to high diversity and that clonal reproduction is predominant. There was also evidence that the genetic diversity of the pathogen in South Africa has increased over time. Comparison of T. zuluensis populations from South Africa, Malawi and China suggest that South Africa is most probably not the centre of origin of the pathogen as has previously been suggested.

Additional keywords

ascomycete Eucalyptus stem canker Kirramyces zuluensis

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agapow PM, Burt A (2001) Indices of multilocus linkage disequilibrium. Molecular Ecology Notes 1, 101–102. doi:10.1046/j.1471-8278.2000. 00014.xCrossRefGoogle Scholar
  2. Andjic V, Barber PA, Carnegie AJ, Hardy GEStJ, Wingfield MJ, Burgess TI (2007) A morphological and phylogenetic reassessment of the genus Phaeophleospora and the resurrection of the genus Kirramyces. Mycological Research 111, 1184–1198. doi:10.1016/j.mycres.2007. 07.003CrossRefPubMedGoogle Scholar
  3. Arnaud-Haond S, Belknir K (2007) GENCLONE 1.0: a new program to analyse genetics data on clonal organisms. Molecular Ecology Notes 7, 15–17. doi:10.1111/j.1471-8286.2006.01522.xCrossRefGoogle Scholar
  4. Arnaud-Haond S, Duarte CM, Alberto F, Serrão EA (2007) Standardizing methods to address clonality in population studies. Molecular Ecology 16, 5115–5139. doi:10.1111/j.1365-294X.2007.03535.xCrossRefPubMedGoogle Scholar
  5. Burgess TI, Andjic V, Wingfield MJ, Hardy GEStJ (2007) The eucalypt leaf blight pathogen Kirramyces destructans discovered in Australia. Australasian Plant Disease Notes 2, 141–144. doi:10.1071/DN07056CrossRefGoogle Scholar
  6. Carnegie AJ, Ades PK, Keane PJ, Smith IW (1998) Mycosphaerella diseases of juvenile foliage in a eucalypt species and provenance trial in Victoria, Australia. Australian Forestry 61, 190–194.Google Scholar
  7. Chen RS, Boeger JM, McDonald BA (1994) Genetic stability in a population of a plant pathogenic fungus over time. Molecular Ecology 3, 209–218. doi:10.1111/j.1365-294X.1994.tb00054.xCrossRefGoogle Scholar
  8. Cortinas MN, Barnes I, Wingfield BD, Wingfield MJ (2006a) Polymorphic microsatellite markers for the Eucalyptus fungal pathogen Colletogloeopsis zuluensis. Molecular Ecology Notes 6, 780–783. doi:10.1111/j.1471-8286.2006.01342.xCrossRefGoogle Scholar
  9. Cortinas MN, Burgess T, Dell B, Xu D, Crous PW, Wingfield BD, Wingfield MJ (2006b) First record of Colletogloeopsis zuluense comb. nov., causing stem canker of Eucalyptus in China. Mycological Research 110, 229–236. doi:10.1016/j.mycres.2005.08.012CrossRefPubMedGoogle Scholar
  10. Cortinas MN, Crous PW, Wingfield BD, Wingfield MJ (2006c) Multilocus gene phylogenies and phenotypic characters distinguish two species within the Colletogloeopsis zuluensis complex associated with Eucalyptus stem cankers. Studies in Mycology 55, 133–146. doi:10.3114/sim.55.1.133CrossRefPubMedGoogle Scholar
  11. Crous PW (1998) Mycosphaerella spp. and their anamorphs associated with leaf spot diseases of Eucalyptus. Mycologia Memoirs 21, 1–170.Google Scholar
  12. Crous PW, Groenewald JZ, Mansilla JP, Hunter GC, Wingfield MJ (2004) Phylogenetic reassessment of Mycosphaerella spp. and their anamorphs occurring on Eucalyptus. Studies in Mycology 50, 195–214.Google Scholar
  13. Crous PW, Wingfield MJ, Mansilla JP, Alfenas AC, Groenewald JZ (2006) Phylogenetic reassessment of Mycosphaerella spp. and their anamorphs occurring on Eucalyptus. II. Studies in Mycology 55, 99–131. doi:10.3114/sim.55.1.99CrossRefPubMedGoogle Scholar
  14. Crous PW, Braun U, Groenewald JZ (2007) Mycosphaerella is polyphyletic. Studies in Mycology 58, 1–32.CrossRefPubMedGoogle Scholar
  15. Crous PW, Groenewald JZ, Summerell BA, Wingfield BD, Wingfield MJ (2009) Co-occurring species of Teratosphaeria on Eucalyptus. Persoonia 22, 38–48. doi:10.3767/003158509X424333PubMedGoogle Scholar
  16. Edwards KR, Travis SE, Proffitt CE (2005) Genetic effects of a large-scale Spartina alterniflora (Smooth Cordgrass) dieback and recovery in the Northern Gulf of Mexico. Estuaries 28, 204–214. doi:10.1007/ BF02732855CrossRefGoogle Scholar
  17. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology 14, 2611–2620. doi:10.1111/j.1365-294X.2005. 02553.xCrossRefPubMedGoogle Scholar
  18. Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164, 1567–1587.PubMedGoogle Scholar
  19. Feau N, Hamelin RC, Vamdecasteele C, Stanosz GR, Bernier L (2005) Genetic structure of Mycosphaerella populorum (anamorph Septoria musiva) populations in North-Central and Northeastern North America. Phytopathology 95, 608–616. doi:10.1094/PHYTO-95-0608CrossRefPubMedGoogle Scholar
  20. Gezahgne A, Roux J, Wingfield MJ (2003) Diseases of exotic plantations Eucalyptus and Pinus species in Ethiopia. South African Journal of Science 99, 29–33.Google Scholar
  21. Gezahgne A, Roux J, Thu PQ, Wingfield MJ (2004) Coniothyrium stem canker of Eucalyptus, new to Argentina and Vietnam. South African Journal of Science 99, 587–588.Google Scholar
  22. Gezahgne A, Cortinas MN, Wingfield MJ, Roux J (2005) Characterisation of the Coniothyrium stem canker pathogen on Eucalyptus camaldulensis in Ethiopia. Australasian Plant Pathology 34, 85–90. doi:10.1071/ AP04079CrossRefGoogle Scholar
  23. Gryzenhout M, Myburg H, van der Merwe NA, Wingfield BD, Wingfield MJ (2004) Chrysoporthe, a new genus to accommodate Cryphonectria cubensis. Studies in Mycology 50, 119–142.Google Scholar
  24. Heath RN, Gryzenhout M, Myburg H, van der Merwe NA, Wingfield BD, Wingfield MJ (2006) Discovery of the Cryphonectria canker pathogen on native Syzygium species in South Africa. Plant Disease 90, 433–438. doi:10.1094/PD-90-0433CrossRefGoogle Scholar
  25. Hughes RA, Stachowicz JJ (2004) Genetic diversity enhances the resistance of a seagrass ecosystem to disturbance. Proceedings of the National Academy of Sciences of the United States of America 101, 8998–9002. doi:10.1073/pnas.0402642101CrossRefPubMedGoogle Scholar
  26. Hunter GC, Crous PW, Roux J, Wingfield BD, Wingfield MJ (2004) Identification of Mycosphaerella species associated with Eucalyptus nitens leaf defoliation in South Africa. Australasian Plant Pathology 33, 349–355. doi:10.1071/AP04022CrossRefGoogle Scholar
  27. Hunter GC, van der Merwe NA, Burgess TI, Carnegie AJ, Wingfield BD, Crous PW, Wingfield MJ (2008) Global movement and population biology of Mycosphaerella nubilosa infecting leaves of cold-tolerant Eucalyptus globulus and E. nitens. Plant Pathology 57, 235–242. doi:10.1111/j.1365-3059.2007.01756.xCrossRefGoogle Scholar
  28. Kohn LM (2005) Mechanisms of fungal speciation. Annual Review of Phytopathology 43, 279–308. doi:10.1146/annurev.phyto.43.040204. 135958CrossRefPubMedGoogle Scholar
  29. Lowe AJ, Boshier D, Ward M, Bacles CE, Navarro C (2005) Genetic resource impacts of habitat loss and degradation; reconciling empirical evidence and predicted theory for neotropical trees. Heredity 95, 255–273. doi:10.1038/sj.hdy.6800725CrossRefPubMedGoogle Scholar
  30. Maynard Smith J, Smith NH, O’Rourke M, Spratt BG (1993) How clonal are bacteria? Proceedings of the National Academy of Sciences of the United States of America 90, 4384–4388. doi:10.1073/pnas.90.10.4384CrossRefGoogle Scholar
  31. McDonald BA (1997) The population genetics of fungi: tools and techniques. Phytopathology 87, 448–453. doi:10.1094/PHYTO.1997.87.4.448CrossRefPubMedGoogle Scholar
  32. McNeilly T, Roose ML (1984) The distribution of perennial ryegrass genotypes in swards. The New Phytologist 98, 503–513. doi:10.1111/ j.1469-8137.1984.tb04144.xCrossRefGoogle Scholar
  33. Milgate AW, Vaillancourt RE, Mohammed C, Powell M, Potts BM (2005) Genetic structure of a Mycosphaerella cryptica population. Australasian Plant Pathology 34, 345–354. doi:10.1071/AP05044CrossRefGoogle Scholar
  34. Nakabonge G, Roux J, Gryzenhout M, Wingfield MJ (2006) Distribution of Chrysoporthe canker pathogens on Eucalyptus and Syzygium spp. in eastern and southern Africa. Plant Disease 90, 734–740. doi:10.1094/ PD-90-0734CrossRefGoogle Scholar
  35. Nei M (1973) Analysis of gene diversity in subdivided populations. Proceedings of the National Academy of Sciences of the United States of America 70, 3321–3323. doi:10.1073/pnas.70.12.3321CrossRefPubMedGoogle Scholar
  36. Old KM, Wingfield MJ, Yuan ZQ (2003) ‘A manual of diseases of eucalypts in South East Asia.’ (Center for International Forestry Research: Bogor, Indonesia)Google Scholar
  37. Park RF, Keane PJ (1982) Leaf diseases of Eucalyptus associated with Mycosphaerella species. Transactions of the British Mycological Society 79, 101–115. doi:10.1016/S0007-1536(82)80195-2CrossRefGoogle Scholar
  38. Park RF, Keane PJ, Wingfield MJ, Crous PW (2000) Fungal diseases of eucalypt foliage. In ‘Diseases and pathogens of eucalypts’. (Eds PJ Keane, GA Kile, FD Podger, BN Brown) pp. 153–239. (CSIRO Publishing: Melbourne)Google Scholar
  39. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155, 945–959.PubMedGoogle Scholar
  40. Reusch TBH (2006) Does disturbance enhance genotypic diversity in clonal organisms? A field test in the marine angiosperm Zostera marina. Molecular Ecology 15, 277–286. doi:10.1111/j.1365-294X.2005. 02779.xCrossRefPubMedGoogle Scholar
  41. Ritland K (1996) Estimators for pairwise relatedness and individual inbreeding coefficients. Genetical Research 67, 175–185. doi:10.1017/ S0016672300033620CrossRefGoogle Scholar
  42. Roux J, Wingfield MJ, Cibrián D (2002) First report of Coniothyrium canker in Mexico. Plant Pathology 51, 382. doi:10.1046/j.1365-3059.2002. 00695.xCrossRefGoogle Scholar
  43. Roux J, Meke G, Kanyi B, Mwangi L, Mbaga A, Hunter GC, Nakabonge G, Wingfield MJ (2005) Diseases of plantation forestry tree species in Eastern and Southern Africa. South African Journal of Science 101, 409–413.Google Scholar
  44. Rozenfeld AF, Arnaud-Haond S, Henández-García E, Equíluz VM, Matías MA, Serrão EA, Duarte CM (2007) Spectrum of genetic diversity and networks of clonal populations. Journal of the Royal Society, Interface 4, 1093–1102. doi:10.1098/rsif.2007.0230CrossRefPubMedGoogle Scholar
  45. Slippers B, Stenlid J, Wingfield MJ (2005) Emerging pathogens: fungal host jumps following anthropogenic introduction. Trends in Ecology & Evolution 20, 420–421. doi:10.1016/j.tree.2005.05.002CrossRefGoogle Scholar
  46. Stoddart JA, Taylor JF (1988) Genotype diversity: estimation and prediction in samples. Genetics 118, 705–711.PubMedGoogle Scholar
  47. Stukenbrock EH, Banke S, Javan-Nikkhah M, McDonald BA (2007) Origin and domestication of the fungal wheat pathogen Mycosphaerella graminicola via sympatric speciation. Molecular Biology and Evolution 24, 398–411. doi:10.1093/molbev/msl169CrossRefPubMedGoogle Scholar
  48. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular Biology and Evolution 24, 1596–1599. doi:10.1093/molbev/ msm092CrossRefPubMedGoogle Scholar
  49. van Zyl LM, Wingfield MJ, Coutinho TA (1997) Diversity among isolates of Coniothyrium zuluense, a newly recorded Eucalyptus stem canker pathogen in South Africa. In ‘Proceedings of the IUFRO conference on silviculture and improvement of Eucalyptus (EMBRAPA/CNPF), Salvador, 24–29 August 1997, Brazil. Anais, Colombo. 3, pp. 135–141. (EMBRAPA/CNPF, Salvador: Brazil)Google Scholar
  50. van Zyl LM, Coutinho TA, Wingfield MJ (2002a) Morphological, cultural and pathogenic characteristics of Coniothyrium zuluense isolates from different plantation regions in South Africa. Mycopathologia 155, 149–153. doi:10.1023/A:1020471227055CrossRefPubMedGoogle Scholar
  51. van Zyl LM, Coutinho TA, Wingfield MJ, Pongpanich K, Wingfield BD (2002b) Morphological and molecular relatedness of geographically diverse isolates of Coniothyrium zuluense from South Africa and Thailand. Mycological Research 106, 51–59. doi:10.1017/S095375620 1005093CrossRefGoogle Scholar
  52. Watkinson AR, Powell JC (1993) Seedling recruitment and the maintenance of clonal diversity in plant populations — a computer simulation of Ranunculus repens. Journal of Ecology 81, 707–717. doi:10.2307/ 2261668CrossRefGoogle Scholar
  53. Weir BS (1996) ‘Genetic data analysis II.’ (Sinauer Associates: Sunderland, MA)Google Scholar
  54. Wingfield MJ (2003) Increasing threat of diseases to exotic plantation forests in the southern hemisphere: lessons from Cryphonectria canker. Australasian Plant Pathology 32, 133–139. doi:10.1071/AP03024CrossRefGoogle Scholar
  55. Wingfield MJ, Crous PW, Boden D (1996) Kirramyces destructans sp. nov., a serious leaf pathogen of Eucalyptus in Indonesia. South African Journal of Botany 62, 325–327.Google Scholar
  56. Wingfield MJ, Crous PW, Coutinho TA (1997) A serious new canker disease of Eucalyptus in South Africa caused by a new species of Coniothyrium. Mycopathologia 136, 139–145. doi:10.1007/BF00438919CrossRefGoogle Scholar
  57. Wingfield MJ, Slippers B, Hurley BP, Coutinho TA, Wingfield BD, Roux J (2008) Eucalypt pests and diseases: growing threats to plantation productivity. Southern Forests: A Journal of Forest Science 70, 139–144.CrossRefGoogle Scholar
  58. Workman PL, Niswander JD (1970) Population studies in South-western Indian tribes. II. Local genetic differentiation in the Papago. American Journal of Human Genetics 22, 24–49.PubMedGoogle Scholar
  59. Wright S (1931) Evolution in Mendelian populations. Genetics 16, 97–159.PubMedGoogle Scholar
  60. Wright S (1978) ‘Evolution and the genetics of populations. Vol. 4: Variability within and among natural populations.’ (University of Chicago Press: Chicago, Il)Google Scholar
  61. Yeh FC, Yang RC, Boyle T (1999) ‘POPGENE. Version 1.31. Microsoft Windows based freeware for population genetic analysis.’ (University of Alberta: Alberta)Google Scholar
  62. Young A, Boyle T, Brown T (1996) The population genetic consequences of habitat fragmentation for plants. Trends in Ecology & Evolution 11, 413–418. doi:10.1016/0169-5347(96)10045-8CrossRefGoogle Scholar

Copyright information

© Australasian Plant Pathology Society 2010

Authors and Affiliations

  • M. N. Cortinas
    • 1
  • I. Barnes
    • 1
  • M. J. Wingfield
    • 1
  • B. D. Wingfield
    • 1
  1. 1.Department of Genetics, Forestry and Agriculture Biotechnology Institute (FABI)University of PretoriaPretoriaSouth Africa

Personalised recommendations