Advertisement

Australasian Plant Pathology

, Volume 35, Issue 6, pp 671–680 | Cite as

Mapping the I-3 gene for resistance to Fusarium wilt in tomato: application of an I-3 marker in tomato improvement and progress towards the cloning of I-3

  • G. T. T. Lim
  • G. -P. Wang
  • M. N. Hemming
  • S. Basuki
  • D. J. McGrath
  • B. J. Carroll
  • D. A. JonesEmail author
Article

Abstract

Fusarium wilt of tomato, caused by the fungal pathogen, Fusarium oxysporum f. sp. lycopersici (Fol), is an economically damaging disease that results in huge losses in Australia and other countries worldwide. The I-3 gene, which confers resistance to Fol race 3, has been described in wild tomato, Lycopersicon pennellii, accessions LA716 and PI414773.We are pursuing the isolation of I-3 from LA716 by map-based cloning.We have constructed a high-resolution map of the I-3 region and have identified markers closely flanking I-3 aswell as markers co-segregating with I-3. In addition, construction of a physical map based on these markers has been initiated. This review describes the context of our research and our progress towards isolating the I-3 gene. It also describes some important practical outcomes of our work, including the development and use of a PCR-based marker for marker-assisted selection for I-3, and the finding that the I-3 gene from LA716 is different to that from PI1414773, which we have now designated I-7. Tomato varieties combining I-3 and I-7 have been developed and are currently being introduced into commercial production to further safeguard tomato crops against Fusarium wilt.

Additional keywords

avirulence recombination suppression tomato chromosome 7 whole chromosome introgression 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agrios GN (1997) ‘Plant pathology.” 4th edn. (Academic Press Inc: New York)Google Scholar
  2. Alabouvette C, Lemanceau P, Steinberg C(1993) Recent advances in the biological control of Fusarium wilts. Pesticide Science 37, 365–373.CrossRefGoogle Scholar
  3. Alexander LJ, Tucker CM (1945) Physiologic specialization in the tomato wilt fungus Fusarium oxysporum f. sp. lycopersici. Journal of Agricultural Research 70, 303–313.Google Scholar
  4. Armstrong G, Armstrong J (1981) Formae speciales and races of Fusarium oxysporum causing wilt disease. In ‘Fusarium: disease, biology and taxonomy’. (Eds P Nelson, T Toussoun, R Cook) pp. 391–399. (University Press: Philadelphia, PA)Google Scholar
  5. Beckman CH (1987) ‘The nature of wilt disease of plants.’ (The American Phytopathological Society: St Paul, MN)Google Scholar
  6. Beckman CH, Verdier PA, Mueller WC (1989) A system of defence in depth provided by vascular parenchyma cells of tomato in response to vascular infection with Fusarium oxysporum f. sp. lycopersici race 1. Physiological and Molecular Plant Pathology 34, 227–239. doi: 10.1016/0885-5765(89)90046-5CrossRefGoogle Scholar
  7. Bent AF, Kunkel BN, Dahlbeck D, Brown KL, Schmidt R, Giraudat J, Leung J, Staskawicz BJ (1994) RPS2 of Arabidopsis thaliana represents a new class of plant disease resistance genes. Science 265, 1856–1860.CrossRefPubMedGoogle Scholar
  8. Bittner-Eddy PD, Crute IR, Holub EB, Beynon JL (2000) RPP13 is a simple locus in Arabidopsis thaliana for alleles that specify downy mildew resistance to different avirulence determinants in Peronospora parasitica. The Plant Journal 21, 177–188. doi: 10.1046/j.1365-313x.2000.00664.xCrossRefPubMedGoogle Scholar
  9. Bohn GW, Tucker CM (1939) Immunity to Fusarium wilt in the tomato. Science 89, 603–604.CrossRefPubMedGoogle Scholar
  10. Botella MA, Parker JE, Frost LN, Bittner-Eddy PD, Beynon JL, Daniels MJ, Holub EB, Jones JDG (1998) Three genes of the Arabidopsis RPP1 complex resistance locus recognize distinct Peronospora parasitica avirulence determinants. The Plant Cell 10, 1847–1860. doi: 10.1105/tpc.10.11.1847CrossRefPubMedGoogle Scholar
  11. Bournival BL, Scott JW, Vallejos CE (1989) An isozyme marker for resistance to race 3 of Fusarium oxysporum f. sp. lycopersici in tomato. Theoretical and Applied Genetics 78, 489–494. doi: 10.1007/BF00290832CrossRefGoogle Scholar
  12. Bournival BL, Vallejos CE, Scott JW (1990) Genetic analysis of resistances to races 1 and 2 of Fusarium oxysporum f. sp. lycopersici from the wild tomato Lycopersicon pennellii. Theoretical and Applied Genetics 79, 641–645. doi: 10.1007/BF00226877CrossRefGoogle Scholar
  13. Brueggeman R, Rostoks N, Kudrna D, Kilian A, Han F, Chen J, Druka A, Steffenson B, Kleinhofs A (2002) The barley stem rust-resistance gene Rpg1 is a novel disease-resistance gene with homology to receptor kinases. Proceedings of the National Academy of Sciences of the United States of America 99, 9328–9333. doi: 10.1073/pnas.142284999CrossRefPubMedGoogle Scholar
  14. Cai D, Kleine M, Kifle S, Harloff H-J, Niels N, et al. (1997) Positional cloning of a gene for nematode resistance in sugar beet. Science 275, 832–834. doi: 10.1126/science.275.5301.832CrossRefPubMedGoogle Scholar
  15. Cai G, Rosewich UL, Pettway RE, Schneider RW (1999) Genetic diversity of Fusarium oxysporum f. sp. lycopersici based on physiological and molecular markers. Phytopathology 89, S11.Google Scholar
  16. Chellemi DO, Dankers HA (1992) First report of Fusarium oxysporum f. sp. lycopersici race 3 on tomato in northwest Florida and Georgia. Plant Disease 76, 861.CrossRefGoogle Scholar
  17. Cirulli M, Alexander LJ (1966) A comparison of pathogenic isolates of Fusarium oxysporum f. sp. lycopersici and different sources of resistance in tomato. Phytopathology 56, 1301–1304.Google Scholar
  18. Collins FS (1992) Positional cloning: Let’s not call it reverse anymore. Nature Genetics 1, 3–6. doi: 10.1038/ng0492-3CrossRefPubMedGoogle Scholar
  19. Correll JC, Klittich CJR, Leslie JF (1987) Nitrate nonutilizing mutants of Fusarium oxysporum and their use in vegetative compatibility tests. Phytopathology 77, 1640–1646.CrossRefGoogle Scholar
  20. Davis RM, Kimble KA, Farrar JJ (1988) A third race of Fusarium oxysporum f. sp. lycopersici identified in California. Plant Disease 72, 453.CrossRefGoogle Scholar
  21. Diener AC, Ausubel FM (2005) RESISTANCE TO FUSARIUM OXYSPORUM 1, a dominant Arabidopsis disease-resistance gene, is not race specific. Genetics 171, 305–321. doi: 10.1534/genetics.105.042218CrossRefPubMedGoogle Scholar
  22. Dixon MS, Jones DA, Keddie JS, Thomas CM, Harrison K, Jones JDG (1996) The tomato Cf-2 disease resistance locus comprises two functional genes encoding leucine-rich repeat proteins. Cell 84, 451–459. doi: 10.1016/S0092-8674(00)81290-8CrossRefPubMedGoogle Scholar
  23. Elias KS, Schneider RW (1991) Vegetative compatibility groups in Fusarium oxysporum f. sp. lycopersici. Phytopathology 81, 159–162.CrossRefGoogle Scholar
  24. Eshed Y, Zamir D (1994) A genomic library of Lycopersicon pennellii in L. esculentum: A tool for fine mapping of genes. Euphytica 79, 175–179. doi: 10.1007/BF00022516CrossRefGoogle Scholar
  25. Flor HH (1971) Current status of the gene-for-gene concept. Annual Review of Phytopathology 9, 275–296. doi: 10.1146/annurev.py.09.090171.001423CrossRefGoogle Scholar
  26. Frary A, Xu Y, Liu J, Mitchell S, Tedeschi E, Tanksley S (2005) Development of a set of PCR-based anchor markers encompassing the tomato genome and evaluation of their usefulness for genetics and breeding experiments. Theoretical and Applied Genetics 111, 291–312. doi: 10.1007/s00122-005-2023-7CrossRefPubMedGoogle Scholar
  27. Grattidge R, O’Brien RG (1982) Occurrence of a third race of fusarium wilt of tomatoes in Queensland. Plant Disease 66, 165–166.CrossRefGoogle Scholar
  28. Hammond-Kosack KE, Jones JDG (1997) Plant disease resistance genes. Annual Review of Plant Physiology and Plant Molecular Biology 48, 575–607. doi: 10.1146/annurev.arplant.48.1.575CrossRefPubMedGoogle Scholar
  29. Hemming MN, Basuki S, McGrath DJ, Carroll BJ, Jones DA (2004) Fine mapping of the tomato I-3 gene for fusarium wilt resistance and elimination of a co-segregating resistance gene analogue as a candidate for I-3. Theoretical and Applied Genetics 109, 409–418. doi: 10.1007/s00122-004-1646-4CrossRefPubMedGoogle Scholar
  30. Hwang C-F, Bhakta AV, Truesdell GM, Pudlo WM, Williamson VM (2000) Evidence for a role of the N terminus and leucine-rich repeat region of the Mi gene product in regulation of localized cell death. The Plant Cell 12, 1319–1329. doi: 10.1105/tpc.12.8.1319CrossRefPubMedGoogle Scholar
  31. Joobeur T, King JJ, Nolin SJ, Thomas CE, Dean RA (2004) The fusarium wilt resistance locus Fom-2 of melon contains a single resistance gene with complex features. The Plant Journal 39, 283–297. doi: 10.1111/j.1365-313X.2004.02134.xCrossRefPubMedGoogle Scholar
  32. Katan T (1999) Current status of vegetative compatibility groups in Fusarium oxysporum. Phytoparasitica 27, 51–64.CrossRefGoogle Scholar
  33. Kawchuk LM, Hachey J, Lynch DR, Kulcsar F, van Rooijen G, et al. (2001) Tomato Ve disease resistance genes encode cell surface-like receptors. Proceedings of the National Academy of Sciences of the United States of America 98, 6511–6515. doi: 10.1073/pnas.091114198CrossRefPubMedGoogle Scholar
  34. Laterrot H (1976) Localisation chromosomique de I2 chez la tomate controlant la resistance au pathotype 2 de Fusarium oxysporum f. sp. lycopersici. Annales de l’Amelioration des Plantes 26, 485–491.Google Scholar
  35. Lauge R, De Wit PJGM (1998) Fungal avirulence genes: structure and possible functions. Fungal Genetics and Biology 24, 285–297. doi: 10.1006/fgbi.1998.1076CrossRefPubMedGoogle Scholar
  36. Liu Y-S, Zamir D (1999) Second generation L. pennellii introgression lines and the concept of bin mapping. Report of the Tomato Genetics Cooperative 49, 26–30.Google Scholar
  37. McDowell JM, Dhandaydham M, Long TA, Aarts MGM, Goff S, Holub EB, Dangl JL (1998) Intragenic recombination and diversifying selection contribute to the evolution of downy mildew resistance at the RPP8 locus of Arabidopsis. The Plant Cell 10, 1861–1874. doi: 10.1105/tpc.10.11.1861CrossRefPubMedGoogle Scholar
  38. McGrath DJ, Gillespie D, Vawdrey L (1987) Inheritance of resistance to Fusarium oxysporum f. sp. lycopersici races 2 and 3 in Lycopersicon pennellii. Australian Journal of Agricultural Research 38, 729–733. doi: 10.1071/AR9870729CrossRefGoogle Scholar
  39. Marlatt ML, Correll JC, Kaufmann P (1996) Two genetically distinct populations of Fusarium oxysporum f. sp. lycopersici race 3 in the United States. Plant Disease 80, 1336–1342.CrossRefGoogle Scholar
  40. Martin GB, Brommonschenkel SH, Chunwongse J, Frary A, Ganal MW, Spivey R, Wu T, Earle ED, Tanksley SD (1993) Map-based cloning of a protein kinase gene conferring disease resistance in tomato. Science 262, 1432–1436.CrossRefPubMedGoogle Scholar
  41. Mes JJ, Weststeijn EA, Herlaar F, Lambalk JJM, Wijbrandi J, Haring MA (1999) Biological and molecular characterisation of Fusarium oxysporum f. sp. lycopersici divides race 1 isolates into separate virulence groups. Phytopathology 89, 156–160.CrossRefPubMedGoogle Scholar
  42. Mes JJ, van Doorn AA, Wijbrandi J, Simons G, Cornelissen BJC, et al. (2000) Expression of the Fusarium resistance gene I-2 colocalizes with the site of fungal containment. The Plant Journal 23, 183–193. doi: 10.1046/j.1365-313x.2000.00765.xCrossRefPubMedGoogle Scholar
  43. Meyer S, Nagel A, Gebhardt C (2004) PoMaMo — a comprehensive database for potato genome data. Nucleic Acids Research 33, D666-D670. doi: 10.1093/nar/gki018CrossRefGoogle Scholar
  44. Milligan SB, Bodeau J, Yaghoobi J, Kaloshian I, Zabel P, Williamson VM (1998) The root knot nematode resistance gene Mi from tomato is a member of the leucine zipper, nucleotide binding, leucine-rich repeat family of plant genes. The Plant Cell 10, 1307–1319. doi: 10.1105/tpc.10.8.1307CrossRefPubMedGoogle Scholar
  45. Mindrinos M, Katagiri F, Yu G-L, Ausubel FM (1994) The A. thaliana disease resistance gene RPS2 encodes a protein containing a nucleotide-binding site and leucine-rich repeats. Cell 78, 1089–1099. doi: 10.1016/0092-8674(94)90282-8CrossRefPubMedGoogle Scholar
  46. Ori N, Eshed Y, Paran I, Presting G, Aviv D, Tanskley SD, Zamir D, Fluhr R (1997) The I2C family from the wilt disease resistance locus I2 belongs to the nucleotide binding, leucine-rich repeat superfamily of plant resistance genes. The Plant Cell 9, 521–532. doi: 10.1105/tpc.9.4.521CrossRefPubMedGoogle Scholar
  47. Paddock EF (1950) Atentative assignment of Fusarium-immunity locus to linkage group 5 in tomato. Genetics 35, 683–684.Google Scholar
  48. Parker JE, Coleman MJ, Szabo V, Frost LN, Schmidt R, van der Biezen EA, Moores T, Dean C, Daniels MJ, Jones JDG (1997) The Arabidopsis downy mildew resistance gene RPP5 shares similarity to the Toll and Interleukin-1 receptors with N and L6. The Plant Cell 9, 879–894. doi: 10.1105/tpc.9.6.879CrossRefPubMedGoogle Scholar
  49. Peters JL, Cnudde F, Gerats T (2003) Forward genetics and map-based cloning approaches. Trends in Plant Science 8, 484–491. doi: 10.1016/j.tplants.2003.09.002CrossRefPubMedGoogle Scholar
  50. Puhalla JE (1985) Classification of strains of Fusarium oxysporum on the basis of vegetative compatibility. Canadian Journal of Botany 63, 179–183.CrossRefGoogle Scholar
  51. Ramsey MD, O’Brien RG, Pegg KG (1992) Fusarium oxysporum associated with wilt and root rot of tomato in Queensland; races and vegetative compatibility groups. Australian Journal of Experimental Agriculture 32, 651–655. doi: 10.1071/EA9920651CrossRefGoogle Scholar
  52. Rep M, van der Does HC, Meijer M, van Wijk R, Houterman PM, Dekker HL, de Koster CG, Cornelissen BJC (2004) A small, cysteine-rich protein secreted by Fusarium oxysporum during colonization of xylem vessels is required for I-3 mediated resistance in tomato. Molecular Microbiology 53, 1373–1383. doi: 10.1111/j.1365-2958.2004.04177.xCrossRefPubMedGoogle Scholar
  53. Rep M, Meijer M, Houterman PM, van der Does HC, Cornelissen BJC (2005) Fusarium oxysporum evades I-3-mediated resistance without altering the matching avirulence gene. Molecular Plant-Microbe Interactions 18, 15–23.CrossRefPubMedGoogle Scholar
  54. Sarfatti M, Katan J, Fluhr R, Zamir D (1989) An RFLP marker in tomato linked to the Fusarium oxysporum resistance gene I2. Theoretical and Applied Genetics 78, 755–759. doi: 10.1007/BF00262574CrossRefGoogle Scholar
  55. Sarfatti M, Abu-Abied M, Katan J, Zamir D (1991) RFLP mapping of I1, a new locus in tomato conferring resistance against Fusarium oxysporum f. sp. lycopersici race 1. Theoretical and Applied Genetics 82, 22–26. doi: 10.1007/BF00231273CrossRefGoogle Scholar
  56. Scott JW, Jones JP (1989) Monogenic resistance in tomato to Fusarium oxysporum f. sp. lycopersici race 3. Euphytica 40, 49–53.Google Scholar
  57. Scott JW, Agrama HA, Jones JP (2004) RFLP-based analysis of recombination among resistance genes to fusarium wilt races 1, 2 and 3 in tomato. Journal of the American Society for Horticultural Science 129, 394–400.Google Scholar
  58. Segal G, Sarfatti M, Schaeffer MA, Ori N, Zamir D, Fluhr R (1992) Correlation of genetics and physical structure in the region surrounding the I2 Fusarium oxysporum locus in tomato. Molecular & General Genetics 231, 179–185.Google Scholar
  59. Sela-Buurlage MB, Budai-Hadrian O, Pan Q, Carmel-Goren L, Vunsch R, Zamir D, Fluhr R (2001) Genome-wide dissection of Fusarium resistance in tomato reveals multiple complex loci. Molecular Genetics and Genomics 265, 1104–1111. doi: 10.1007/s004380100509CrossRefPubMedGoogle Scholar
  60. Simons G, Groenendijk J, Wijbrandi J, Reijans M, Groenen J, et al. (1998) Dissection of the Fusarium I2 gene cluster in tomato reveals six homologs and one active gene copy. The Plant Cell 10, 1055–1068. doi: 10.1105/tpc.10.6.1055CrossRefPubMedGoogle Scholar
  61. Song W-Y, Wang G-L, Chen L-L, Kim H-S, Pi L-Y, et al. (1995) A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science 270, 1804–1806.CrossRefPubMedGoogle Scholar
  62. Stall RE, Walter JM (1965) Selection and inheritance of resistance in tomato to isolates of races 1 and 2 of the fusarium wilt organism. Phytopathology 55, 1213–1215.Google Scholar
  63. Sun X, Cao Y, Yang Z, Xu C, Li X, Wang S, Zhang Q (2004) Xa26, a gene conferring resistance to Xanthomonas oryzae pv. oryzae in rice, encodes an LRR receptor kinase-like protein. The Plant Journal 37, 517–527. doi: 10.1046/j.1365-313X.2003.01976.xCrossRefPubMedGoogle Scholar
  64. Tanksley SD, Costello W (1991) The size of the L. pennellii chromosome 7 segment containing the I-3 gene in tomato breeding lines as measured by RFLP probing. Report of the Tomato Genetics Cooperative 41, 60–61.Google Scholar
  65. Tanksley SD, Ganal MW, Prince JP, de Vicente MC, Bonierbale MW, et al. (1992) High density molecular linkage maps of the tomato and potato genomes. Genetics 132, 1141–1160.PubMedGoogle Scholar
  66. Tanksley SD, Ganal MW, Martin GB (1995) Chromosome landing: a paradigm for map-based gene cloning in plants with large genomes. Trends in Genetics 11, 63–68. doi: 10.1016/S0168-9525 (00)88999-4CrossRefPubMedGoogle Scholar
  67. Tor M, Brown D, Cooper A, Woods-Tor A, Sjolander K, Jones JDG, Holub EB (2004) Arabidopsis downy mildew resistance gene RPP27 encodes a receptor-like protein similar to CLAVATA2 and tomato Cf-9. Plant Physiology 135, 1100–1112. doi: 10.1104/pp.103. 037770CrossRefPubMedGoogle Scholar
  68. Valenzuela-Ureta JG, Lawn DA, Heisey RF, Zamudio-Guzman V (1996) First report of Fusarium wilt race 3, caused by Fusarium oxysporum f. sp. lycopersici, of tomato in Mexico. Plant Disease 80, 105.CrossRefGoogle Scholar
  69. Volin RB, Jones JP (1982) A new race of Fusarium wilt of tomato in Florida and sources of resistance. Proceedings of the Florida State Horticultural Society 95, 268–270.Google Scholar
  70. White FF, Yang B, Johnson LB (2000) Prospects for understanding avirulence gene function. Current Opinion in Plant Biology 3, 291–298. doi: 10.1016/S1369-5266(00)00082-0CrossRefPubMedGoogle Scholar
  71. Wicking C, Williamson B (1991) From linked marker to gene. Trends in Genetics 7, 288–293.PubMedGoogle Scholar
  72. Xiao S, Ellwood S, Calis O, Patrick E, Li T, Coleman M, Turner JG (2001) Broad-spectrum mildew resistance in Arabidopsis thaliana mediated by RPW8. Science 291, 118–120. doi: 10.1126/science.291.5501.118CrossRefPubMedGoogle Scholar
  73. Yoshimura S, Yamanouchi U, Katayose Y, Toki S, Wang Z-X, Kono I, Kurata N, Yano M, Iwata N, Sasaki T (1998) Expression of Xa1, a bacterial blight-resistance gene in rice, is induced by bacterial inoculation. Proceedings of the National Academy of Sciences of the United States of America 95, 1663–1668. doi: 10.1073/pnas.95.4.1663CrossRefPubMedGoogle Scholar

Copyright information

© Australasian Plant Pathology Society 2006

Authors and Affiliations

  • G. T. T. Lim
    • 1
  • G. -P. Wang
    • 1
    • 2
  • M. N. Hemming
    • 1
  • S. Basuki
    • 3
  • D. J. McGrath
    • 4
  • B. J. Carroll
    • 3
  • D. A. Jones
    • 1
    Email author
  1. 1.Plant Cell Biology, Research School of Biological SciencesThe Australian National UniversityCanberraAustralia
  2. 2.College of HorticultureSouth China Agricultural UniversityGuangzhouChina
  3. 3.Department of Biochemistry and Molecular Biology, School of Molecular and Microbial Sciences and School of Land and Food SciencesThe University of QueenslandBrisbaneAustralia
  4. 4.Queensland Department of Primary Industries and FisheriesBowenAustralia

Personalised recommendations