Advertisement

Australasian Plant Pathology

, Volume 35, Issue 6, pp 605–618 | Cite as

Transgenic gene silencing strategies for virus control

  • R. G. DietzgenEmail author
  • N. Mitter
Article

Abstract

Co-suppression of transgenes and their homologous viral sequences by RNA silencing is a powerful strategy for achieving high-level virus resistance in plants. This review provides a brief overview of RNA silencing mechanisms in plants and discusses important transgene construct design features underpinning successful RNA silencing-mediated transgenic virus control. Application of those strategies to protect horticultural and field crops from virus infection and results of field tests are also provided. The effectiveness and stability of RNA-mediated transgenic resistance are assessed taking into account effects of viral, plant and environmental factors.

Additional keywords

double-stranded RNA RNA interference silencing suppressors small interfering RNA transgenic crops 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Accotto GP, Nervo G, Acciarri N, Tavella L, Vecchiati M, Schiavi M, Mason G, Vaira AM (2005) Field evaluation of tomato hybrids engineered with Tomato spotted wilt virus sequences for virus resistance, agronomic performance, and pollen-mediated transgene flow. Phytopathology 95, 800–807.CrossRefPubMedGoogle Scholar
  2. Andika IB, Kondo H, Tamada T (2005) Evidence that RNA silencing-mediated resistance to Beet necrotic yellowvein virus is less effective in roots than in leaves. Molecular Plant-Microbe Interactions 18, 194–204.CrossRefPubMedGoogle Scholar
  3. Asad S, Haris WAA, Bashir A, Zafar Y, Malik KA, Malik NN, Lichtenstein CP (2003) Transgenic tobacco expressing geminiviral RNAs are resistant to the serious viral pathogen causing cotton leaf curl disease. Archives of Virology 148, 2341–2352. doi: 10.1007/s00705-003-0179-5CrossRefPubMedGoogle Scholar
  4. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism and function. Cell 116, 281–297. doi: 10.1016/S0092-8674(04)00045-5CrossRefPubMedGoogle Scholar
  5. Bau H-J, Cheng Y-H, Yu T-A, Yang J-S, Yeh S-D (2003) Broad-spectrum resistance to different geographic strains of Papaya ringspot virus in coat protein gene transgenic papaya. Phytopathology 93, 112–120.CrossRefPubMedGoogle Scholar
  6. Baulcombe D (2004) RNA silencing in plants. Nature 431, 356–363. doi: 10.1038/nature02874CrossRefPubMedGoogle Scholar
  7. Baumberger N, Baulcombe DC (2005) Arabidopsis ARGONAUTE1 is a RNA slicer that selectively recruits miRNAs and siRNAs. Proceedings of the National Academy of Sciences of the United States of America 102, 11928–11933. doi: 10.1073/pnas. 0505461102CrossRefPubMedGoogle Scholar
  8. Beclin C, Boutet S, Waterhouse P, Vaucheret H (2002) A branched pathway for transgene-induced RNA silencing in plants. Current Biology 12, 684–688. doi: 10.1016/S0960-9822(02)00792-3CrossRefPubMedGoogle Scholar
  9. Bendahmane M, Gronenborn B (1997) Engineering resistance against tomato yellow leaf curl virus (TYLCV) using antisense RNA. Plant Molecular Biology 33, 351–357. doi: 10.1023/A:1005715805000CrossRefPubMedGoogle Scholar
  10. Bian X-Y, Rasheed MS, Seemanpillai MJ, Rezaian MA (2006) Analysis of silencing escape of Tomato leaf curl virus: An evaluation of the role of DNAmethylation. Molecular Plant-Microbe Interactions 19, 614–624.CrossRefPubMedGoogle Scholar
  11. Carrington JC, Kasschau KD, Johansen LK (2001) Activation and suppression of RNA silencing by plant viruses. Virology 281, 1–5. doi: 10.1006/viro.2000.0812CrossRefPubMedGoogle Scholar
  12. Chellappan P, Masona MV, Vanitharani R, Taylor NJ, Fauquet CM (2004) Broad spectrum resistance to ssDNA viruses associated with transgene-induced gene silencing in cassava. Plant Molecular Biology 56, 601–611. doi: 10.1007/s11103-004-0147-9CrossRefPubMedGoogle Scholar
  13. Chen Y-K, Lohuis D, Goldbach R, Prins M (2004) High frequency induction of RNA-mediated resistance against Cucumber mosaic virus using inverted repeat constructs. Molecular Breeding 14, 215–226. doi: 10.1023/B:MOLB.0000047769.82881.f5CrossRefGoogle Scholar
  14. Cillo F, Finetti-Sialer MM, Papanice MA, Gallitelli D (2004) Analysis of mechanisms involved in the Cucumber mosaic virus satellite RNA-mediated transgenic resistance in tomato plants. Molecular Plant-Microbe Interactions 17, 98–108.CrossRefPubMedGoogle Scholar
  15. Dalmay T, Hamilton A, Rudd S, Angell S, Baulcombe DC (2000) An RNA dependent RNA polymerase gene is required for post transcriptional gene silencing mediated by a transgene but not by a virus. Cell 101, 543–553. doi: 10.1016/S0092-8674(00)80864-8CrossRefPubMedGoogle Scholar
  16. Di Nicola-Negri E, Brunetti A, Tavazza M, Ilardi V (2005) Hairpin RNA-mediated silencing of Plum pox virus P1 and HC-Pro genes for efficient and predictable resistance to the virus. Transgenic Research 14, 989–994. doi: 10.1007/s11248-005-1773-yCrossRefPubMedGoogle Scholar
  17. Di Serio F, Schob H, Iglesias A, Tarina C, Bouldoires E, Meins F Jr (2001) Sense- and antisense-mediated gene silencing in tobacco is inhibited by the same viral suppressors and is associated with accumulation of small RNAs. Proceedings of the National Academy of Sciences of the United States of America 98, 6506–6510. doi: 10.1073/pnas.111423098CrossRefPubMedGoogle Scholar
  18. Dunoyer P, Voinnet O (2005) The complex interplays between plant viruses and host RNA-silencing pathways. Current Opinion in Plant Biology 8, 415–423. doi: 10.1016/j.pbi.2005.05.012CrossRefPubMedGoogle Scholar
  19. Dunoyer P, Himber C, Voinnet O (2005) Dicer-like 4 is required for RNA interference and produces the 21-nucleotide small interfering RNA component of the plant cell-to-cell silencing signal. Nature Genetics 37, 1356–1360. doi: 10.1038/ng1675CrossRefPubMedGoogle Scholar
  20. Fagoaga C, López C, Hermoso de Mendoza A, Moreno P, Navarro L, Flores R, Pena L (2006) Post-transcriptional gene silencing of the p23 silencing suppressor of Citrus tristeza virus confers resistance to the virus in transgenic Mexican lime. Plant Molecular Biology 60, 153–165. doi: 10.1007/s11103-005-3129-7CrossRefPubMedGoogle Scholar
  21. Fuentes A, Ramos PL, Fiallo E, Callard D, Sánchez Y, Peral R, Rodríguez R, Pujol M (2006) Intron-hairpin RNA derived from replication associated protein C1 gene confers immunity to Tomato Yellow Leaf Curl Virus infection in transgenic tomato plants. Transgenic Research 15, 291–304. doi: 10.1007/s11248-005-5238-0CrossRefPubMedGoogle Scholar
  22. Gal-On A, Wolf D, Antignus Y, Patlis L, Ryu KH, et al. (2005) Transgenic cucumbers harbouring the 54-kDa putative gene of Cucumber fruit mottle mosaic tobamovirus are highly resistant to viral infection and protect non-transgenic scions from soil infection. Transgenic Research 14, 81–93. doi: 10.1007/s11248-004-3802-7CrossRefPubMedGoogle Scholar
  23. Gasciolli V, Mallory AC, Bartel DP, Vaucheret H (2005) Partially redundant functions of Arabidopsis DICER-like enzymes and a role for dcl4 in producing trans- acting siRNAs. Current Biology 15, 1494–1500. doi: 10.1016/j.cub.2005.07.024CrossRefPubMedGoogle Scholar
  24. Goldbach R, Bucher E, Prins M (2003) Resistance mechanisms to plant viruses: an overview. Virus Research 92, 207–212. doi: 10.1016/S0168-1702(02)00353-2CrossRefPubMedGoogle Scholar
  25. Han SJ, Cho HS, You JS, Nam YW, Park EK, Park WM, Paek KH (1999) Gene silencing mediated resistance in transgenic tobacco plants carrying potato virus Y coat protein gene. Molecular Cell 9, 376–383.Google Scholar
  26. Herr AJ, Jensen MB, Dalmay T, Baulcombe DC (2005) RN Apolymerase IV directs silencing of endogenous DNA. Science 308, 118–120. doi: 10.1126/science.1106910CrossRefPubMedGoogle Scholar
  27. Higgins CM, Hall RM, Mitter N, Cruickshank A, Dietzgen RG (2004) Peanut stripe potyvirus resistance in peanut (Arachis hypogaea L.) plants carrying viral coat protein gene sequences. Transgenic Research 13, 59–67. doi: 10.1023/B:TRAG.0000017166.29458.74CrossRefPubMedGoogle Scholar
  28. Hily J-M, Scorza R, Malinowski T, Zawadzka B, Ravelonandro M (2004) Stability of gene silencing-based resistance to Plum pox virus in transgenic plum (Prunus domestica L.) under field conditions. Transgenic Research 13, 427–436. doi: 10.1007/s11248-004-8702-3CrossRefPubMedGoogle Scholar
  29. Hily J-M, Scorza R, Webb K, Ravelonandro M (2005) Accumulation of the long class of siRNA is associated with resistance to Plum pox virus in a transgenic woody perennial plum tree. Molecular Plant-Microbe Interactions 18, 794–799.CrossRefPubMedGoogle Scholar
  30. Hunter C, Sun H, Pething RS (2003) The Arabidopsis heterochromatic gene ZIPPY is an ARGONAUTE family member. Current Biology 13, 1734–1739. doi: 10.1016/j.cub.2003.09.004CrossRefPubMedGoogle Scholar
  31. Ingelbrecht IL, Irvine JE, Mirkov TE (1999) Posttranscriptional gene silencing in transgenic sugarcane. Dissection of homology-dependent virus resistance in a monocot that has a complex polyploid genome. Plant Physiology 119, 1187–1198. doi: 10.1104/pp.119.4.1187CrossRefPubMedGoogle Scholar
  32. Jan F-J, Pang S-Z, Fagoaga C, Gonsalves D (1999) Turnip mosaic potyvirus resistance in Nicotiana benthamiana derived by post-transcriptional gene silencing. Transgenic Research 8, 203–219. doi: 10.1023/A:1008915007271CrossRefPubMedGoogle Scholar
  33. Jan F-J, Fagoaga C, Pang S-Z, Gonsalves D (2000a) A single chimeric transgene derived from two distinct viruses confers multi-virus resistance in transgenic plants through homology-dependent gene silencing. Journal of General Virology 81, 2103–2109.PubMedGoogle Scholar
  34. Jan F-J, Fagoaga C, Pang S-Z, Gonsalves D (2000b) A minimum length of N gene sequence in transgenic plants is required for RNA mediated tospovirus resistance. Journal of General Virology 81, 235–242.PubMedGoogle Scholar
  35. Jan F-J, Pang S-Z, Tricoli DM, Gonsalves D (2000c) Evidence that resistance in squash mosaic comovirus coat protein-transgenic plants is affected by plant developmental stage and enhanced by combination of transgenes from different lines. Journal of General Virology 81, 2299–2306.PubMedGoogle Scholar
  36. Ji LH, Ding SW (2001) The suppressor of transgene RNA silencing encoded by cucumber mosaic virus interferes with salicylic acid-mediated virus resistance. Molecular Plant-Microbe Interactions 14, 715–724.CrossRefPubMedGoogle Scholar
  37. Kalantidis K, Psaradakis S, Tabler M, Tsagris M (2002) The occurrence of CMV-specific short RNAs in transgenic tobacco expressing virus-derived double stranded RNA is indicative of resistance. Molecular Plant-Microbe Interactions 15, 826–833.CrossRefPubMedGoogle Scholar
  38. Kato H, Goto DB, Martienssen RA, Urano T, Furulawa K, Murakami Y (2005) RNA polymerase II is required for RNAi-dependent heterochromatin assembly. Science 309, 467–469. doi: 10.1126/science.1114955CrossRefPubMedGoogle Scholar
  39. Lecellier C-H, Voinnet O (2004) RNA silencing — no mercy for viruses? Immunological Reviews 198, 285–303. doi: 10.1111/j.0105-2896.2004.00128.xCrossRefPubMedGoogle Scholar
  40. Levin JS, Thompson WF, Csinos AS, Stephenson MG, Weissinger AK (2005) Matrix attachment regions increase the efficiency and stability of RNA-mediated resistance to tomato spotted wilt virus in transgenic tobacco. Transgenic Research 14, 193–206. doi: 10.1007/s11248-004-5413-8CrossRefPubMedGoogle Scholar
  41. Lindbo JL, Dougherty WG (1992) Pathogen-derived resistance to a potyvirus: Immune and resistance phenotypes in transgenic tobacco expressing altered forms of a potyvirus coat protein nucleotide sequence. Molecular Plant-Microbe Interactions 5, 144–153.CrossRefPubMedGoogle Scholar
  42. Lindbo JL, Dougherty WG (2005) Plant Pathology and RNAi: a brief history. Annual Review of Phytopathology 43, 191–204. doi: 10.1146/annurev.phyto.43.040204.140228CrossRefPubMedGoogle Scholar
  43. Lines RE, Persley D, Dale JL, Drew R, Bateson MF (2002) Genetically engineered immunity to Papaya ringspot virus in Australian papaya cultivars. Molecular Breeding 10, 119–129. doi: 10.1023/A:1020381110181CrossRefGoogle Scholar
  44. Lippman Z, Martienssen R (2004) The role of RNA interference in heterochromatic silencing. Nature 431, 364–370. doi: 10.1038/nature02875CrossRefPubMedGoogle Scholar
  45. Lomonossoff GP (1995) Pathogen-derived resistance to plant viruses. Annual Review of Phytopathology 33, 323–343. doi: 10.1146/annurev.py.33.090195.001543CrossRefPubMedGoogle Scholar
  46. Makeyev EV, Bamford DH (2002) Cellular RNA dependent RNA polymerase involved in post transcriptional gene silencing has tow distinct activity modes. Molecular Cell 10, 1417–1427. doi: 10.1016/S1097-2765(02)00780-3CrossRefPubMedGoogle Scholar
  47. Mäki-Valkama T, Valkonen JPT, Kreuze JF, Pehu E (2000) Transgenic resistance to PVY0 associated with post-transcriptional silencing of P1 transgene is overcome by PVYN strains that carry highly homologous P1 sequences and recover transgene expression at infection. Molecular Plant-Microbe Interactions 13, 366–373.CrossRefPubMedGoogle Scholar
  48. Meister G, Tuschl T (2004) Mechanism of gene silencing by double stranded RNA. Nature 431, 343–349. doi: 10.1038/nature02873CrossRefPubMedGoogle Scholar
  49. Missiou A, Kalantidis K, Boutla A, Tzortzakaki S, Taber M, Tsagris M (2004) Generation of transgenic potato plants highly resistant to potato virus Y (PVY) through RNA silencing. Molecular Breeding 14, 185–197. doi: 10.1023/B:MOLB.0000038006.32812.52CrossRefGoogle Scholar
  50. Mitter N, Sulistyowati E, Graham MW, Dietzgen RG (2001) Suppression of gene silencing: A threat to virus-resistant transgenic plants? Trends in Plant Science 6, 246–247. doi: 10.1016/S1360-1385(01)01947-1CrossRefPubMedGoogle Scholar
  51. Mitter N, Sulistyowati E, Dietzgen RG (2003) Cucumber mosaic virus infection transiently breaks dsRNA-induced transgenic immunity to Potato virus Y in tobacco. Molecular Plant-Microbe Interactions 16, 936–944.CrossRefPubMedGoogle Scholar
  52. Mlotshwa S, Voinnet O, Mette MF, Matzke M, Vaucheret H, Ding SW, Pruss G, Vance VB (2002) RNA silencing and the mobile silencing signal. The Plant Cell 14, S289-S301. doi: 10.1105/tpc.140210CrossRefPubMedGoogle Scholar
  53. Moissiard G, Voinnet O (2004) Viral suppression of RNA silencing in plants. Molecular Plant Pathology 5, 71–82. doi: 10.1111/j.1364-3703.2004.00207.xCrossRefPubMedGoogle Scholar
  54. Mourrain P, Beclin C, Elmayan T, Fenerbach F, Godon C, et al. (2000) Arabidopsis SGS2 and SGS3 genes are required for posttranscriptional gene silencing and natural viral resistance. Cell 101, 533–542. doi: 10.1016/S0092-8674(00)80863-6CrossRefPubMedGoogle Scholar
  55. Noris E, Lucioli A, Tavazza R, Caciagli P, Accotto GP, Tavazza M (2004) Tomato yellow leaf curl Sardinia virus can overcome transgene-mediated RNA silencing of two essential viral genes. Journal of General Virology 85, 1745–1749. doi: 10.1099/vir.0.79944-0CrossRefPubMedGoogle Scholar
  56. Palauqui JC, Elmayan T, Pollien JM, Vaucheret H (1997) Systemic acquired silencing: transgene-specific post-transcriptional silencing is transmitted by grafting from silenced stocks to nonsilenced scions. EMBO Journal 16, 4738–4745. doi: 10.1093/emboj/16.15.4738CrossRefPubMedGoogle Scholar
  57. Pandolfini T, Molesini B, Avesani L, Spena A, Polverari A (2003) Expression of self-complementary hairpin RNAunder the control of the rolC promoter confers systemic disease resistance to plum pox virus without preventing local infection. BMC Biotechnology 3, 7. doi: 10.1186/1472-6750-3-7CrossRefPubMedGoogle Scholar
  58. Pang S-Z, Jan F-J, Carney K, Stout J, Tricoli DM, Quemada HD, Gonsalves D (1996) Post-transcriptional transgene silencing and consequent tospovirus resistance in transgenic lettuce are affected by transgene dosage and plant development. The Plant Journal 9, 899–909. doi: 10.1046/j.1365-313X.1996.9060899.xCrossRefGoogle Scholar
  59. Pang S-Z, Jan F-J, Gonsalves D (1997) Nontarget DNA sequences reduce the transgene length necessary for RNA-mediated tospovirus resistance in transgenic plants. Proceedings of the National Academy of Sciences of the United States of America 94, 8261–8266. doi: 10.1073/pnas.94.15.8261CrossRefPubMedGoogle Scholar
  60. Pfeffer S, Dunoyer P, Heim F, Richards KE, Jonard G, Ziegler-Graff V (2002) P0 of Beet western yellows virus is a suppressor of posttranscriptional gene silencing. Journal of Virology 76, 6815–6824. doi: 10.1128/JVI.76.13.6815-6824.2002CrossRefPubMedGoogle Scholar
  61. Pinto YM, Kok RA, Baulcombe DC (1999) Resistance to rice yellow mottle virus (RYMV) in cultivated African rice varieties containing RYMV transgenes. Nature Biotechnology 17, 702–707. doi: 10.1038/10917CrossRefPubMedGoogle Scholar
  62. Polston JE, Lapidot M, England RW, Hiebert E (2005) Translocation of genetically engineered resistance to Tomato yellow leaf curl virus across a graft. In ‘2nd joint conference of the international working groups on legume and vegetable viruses’. p. 29. (Ft Lauderdale, Florida)Google Scholar
  63. Powell-Abel P, Nelson RS, De B, Hoffman N, Rogers SG, Fraley RT, Beachy RN (1986) Delay of disease development in transgenic plants that express the tobacco mosaic virus coat protein gene. Science 232, 738–743.CrossRefGoogle Scholar
  64. Ravelonandro M, Scorza R, Callahan A, Levy L, Jaquet C, Monison M, Damsteegt V (2000) The use of transgenic fruit trees as a resistance strategy for virus epidemics: the plum pox (sharka) model. Virus Research 71, 63–69. doi: 10.1016/S0168-1702(00)00188-XCrossRefPubMedGoogle Scholar
  65. Roth BM, Pruss GJ, Vance VB (2004) Plant viral suppressors of RNA silencing. Virus Research 102, 97–108. doi: 10.1016/j.virusres.2004.01.020CrossRefPubMedGoogle Scholar
  66. Sanford JC, Johnston SA (1985) The concept of parasite-derived resistance-deriving resistance genes from the parasite’s owngenome. Journal of Theoretical Biology 113, 395–405. doi: 10.1016/S0022-5193(85)80234-4CrossRefGoogle Scholar
  67. Savenkov EI, Valkonen JPT (2001) Coat protein gene-mediated resistance to Potato virus A in transgenic plants is suppressed following infection with another potyvirus. Journal of General Virology 82, 2275–2278.PubMedGoogle Scholar
  68. Schiebel W, Haas B, Marinkovic S, Klanner A, Sanger HL (1998) Isolation of an RNA-directed RNA polymerase specific cDNA clone form tomato. The Plant Cell 10, 2082102.CrossRefGoogle Scholar
  69. Schwach F, Vaistij FE, Jones L, Baulcombe DC (2005) An RNA dependent RNA polymerase prevents meristem invasion by potato virus X and is required for the activity but not the production of a systemic silencing signal. Plant Physiology 138, 1842–1852. doi: 10.1104/pp.105.063537CrossRefPubMedGoogle Scholar
  70. Scorza R, Callahan A, Levy L, Damsteegt V, Webb K, Ravelonandro M (2001) Post-transcriptional gene silencing in plum pox virus resistant transgenic European plum containing the plum pox potyvirus coat protein gene. Transgenic Research 10, 201–209. doi: 10.1023/A:1016644823203CrossRefPubMedGoogle Scholar
  71. Silhavy D, Burgyan J (2004) Effects and side effects of viral RNA silencing suppressors on short RNAs. Trends in Plant Science 9, 76–83. doi: 10.1016/j.tplants.2003.12.010CrossRefPubMedGoogle Scholar
  72. Simón-Mateo C, López-Moya JJ, Guo HS, González E, García JA (2003) Suppressor activity of potyviral and cucumoviral infections in potyvirus-induced transgene silencing. Journal of General Virology 84, 2877–2883. doi: 10.1099/vir.0.19263-0CrossRefPubMedGoogle Scholar
  73. Sivamani E, Brey CW, Dyer WE, Talbert LE, Qu R (2000) Resistance to wheat streak mosaic virus in transgenic wheat expressing the viral replicase (NIb) gene. Molecular Breeding 6, 469–477. doi: 10.1023/A:1026576124482CrossRefGoogle Scholar
  74. Sivamani E, Brey CW, Talbert LE, Young MA, Dyer WE, Kaniewski WK, Qu R (2002) Resistance to wheat streak mosaic virus in transgenicwheat engineered with the viral coat protein gene. Transgenic Research 11, 31–41. doi: 10.1023/A:1013944011049CrossRefPubMedGoogle Scholar
  75. Smith NA, Singh SP, Wang M-B, Stoutjesdijk PA, Green AG, Waterhouse PM (2000) Total silencing by intron-spliced hairpin RNAs. Nature 407, 319–320. doi: 10.1038/35036500CrossRefPubMedGoogle Scholar
  76. Sós-Hegedűs A, Lovas A, Kondrák M, Kovács G, Bánfalvi Z (2005) ActiveRNAsilencing at lowtemperature indicates distinct pathways for antisense-mediated gene-silencing in potato. Plant Molecular Biology 59, 595–602. doi: 10.1007/s11103-005-0354-zCrossRefPubMedGoogle Scholar
  77. Szittya G, Silhavy D, Molnar A, Havelda Z, Lovas A, Lakatos L, Banfalvi Z, Burgyan J (2003) Low temperature inhibits RNA silencing-mediated defence by the control of siRNA generation. EMBO Journal 22, 633–640. doi: 10.1093/emboj/cdg74CrossRefPubMedGoogle Scholar
  78. Tenllado F, Llave C, Díaz-Ruíz JR (2004) RNA interference as a new biotechnological tool for the control of virus diseases in plants. Virus Research 102, 85–96. doi: 10.1016/j.virusres.2004.01.019CrossRefPubMedGoogle Scholar
  79. Tennant P, Fermin G, Fitch MM, Manshardt RM, Slightom SL, Gonsalves D (2001) Papaya ringspot virus resistance of transgenic Rainbow and SunUp is affected by gene dosage, plant development, and coat protein homology. European Journal of Plant Pathology 107, 645–653. doi: 10.1023/A:1017936226557CrossRefGoogle Scholar
  80. Vazquez Rovere C, Asurmendi S, Hopp HE (2001) Transgenic resistance in potato plants expressing potato leaf roll virus (PLRV) replicase gene sequences is RNA-mediated and suggests the involvement of post-transcriptional gene silencing. Archives of Virology 146, 1337–1353. doi: 10.1007/s007050170095CrossRefPubMedGoogle Scholar
  81. Voinnet O (2001) RNA silencing as a plant immune system against viruses. Trends in Genetics 17, 449–459. doi: 10.1016/S0168-9525(01)02367-8CrossRefPubMedGoogle Scholar
  82. Voinnet O (2005a) Induction and suppression of RNA silencing: Insights from viral infections. Nature Reviews. Genetics 6, 206–220. doi: 10.1038/nrg1555CrossRefPubMedGoogle Scholar
  83. Voinnet O (2005b) Non cell autonomous RNA silencing. FEBS Letters 579, 5858–5871. doi: 10.1016/j.febslet.2005.09.039CrossRefPubMedGoogle Scholar
  84. Voinnet O, Pinto YM, Baulcombe DC (1999) Suppression of gene silencing: A general strategy used by diverse DNA and RNA viruses of plants. Proceedings of the National Academy of Sciences of the United States of America 96, 14147–14152. doi: 10.1073/pnas.96.24.14147CrossRefPubMedGoogle Scholar
  85. Wang M-B, Abbott DC, Waterhouse PM (2000) A single copy of a virus-derived transgene encoding hairpin RNA gives immunity to barley yellow dwarf virus. Molecular Plant Pathology 1, 347–356. doi: 10.1046/j.1364-3703.2000.00038.xCrossRefPubMedGoogle Scholar
  86. Wang M-B, Metzlaff M (2005) RNA silencing and antiviral defense in plants. Current Opinion in Plant Biology 8, 216–222. doi: 10.1016/j.pbi.2005.01.006CrossRefPubMedGoogle Scholar
  87. Waterhouse PM, Graham MW, Wang M-B (1998) Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA. Proceedings of the National Academy of Sciences of the United States of America 95, 13959–13964. doi: 10.1073/pnas.95.23.13959CrossRefPubMedGoogle Scholar
  88. Xie Z, Johansen LK, Gustafson AM, Kasschau KD, Lellis AD, Zilberman D, Jacobsen SE, Carrington JC (2004) Genetic and functional diversification of small RNA pathways in plants. PLoS Biology 2, 642–652. doi: 10.1371/journal.pbio.0020104CrossRefGoogle Scholar
  89. Xu J, Schubert J, Altpeter F (2001) Dissection of RNA-mediated ryegrass mosaic virus resistance in fertile transgenic perennial ryegrass (Lolium perenne L.). The Plant Journal 26, 265–274. doi: 10.1046/j.1365-313X.2001.01025.xCrossRefPubMedGoogle Scholar
  90. Yang Y, Sherwood TA, Patte CP, Hiebert E, Polston JE (2004) Use of Tomato yellow leaf curl virus (TYLCV) Rep gene sequences to engineer TYLCV resistance in tomato. Phytopathology 94, 490–496.CrossRefPubMedGoogle Scholar
  91. Yu D, Fan B, MacFarlane SA, Chen Z (2003) Analysis of the involvement of an inducible RNA dependent RNA polymerase in antiviral defense. Molecular Plant-Microbe Interactions 16, 206–216.CrossRefPubMedGoogle Scholar

Copyright information

© Australasian Plant Pathology Society 2006

Authors and Affiliations

  1. 1.Department of Primary Industries and Fisheries, Emerging Technologies, Queensland Agricultural Biotechnology CentreQueensland Bioscience PrecinctSt LuciaAustralia
  2. 2.Cooperative Research Centre for Tropical Plant ProtectionThe University of QueenslandSt LuciaAustralia

Personalised recommendations