Advertisement

Australasian Plant Pathology

, Volume 35, Issue 6, pp 573–579 | Cite as

Genetic improvement of lucerne for anthracnose (Colletotrichum trifolii) resistance

  • J. A. G. IrwinEmail author
  • K. S. Aitken
  • J. M. Mackie
  • J. M. Musial
Article

Abstract

Anthracnose, caused by Colletotrichum trifolii, is one of the most serious diseases influencing lucerne persistence and productivity in eastern Australia. The disease is largely controlled by plant resistance; however, new pathotypes of C. trifolii have developed in Australia, seriously limiting the productive life of susceptible cultivars. This paper describes an incompletely recessive and quantitatively inherited resistance to C. trifolii identified in a clone (W116) from cv. Sequel. S1, F1, F2 and backcross populations of W116 and D (highly susceptible clone) were studied for their reaction to C. trifolii race 1. Resistance was found to be quantitatively inherited, and quantitative trait loci associated with resistance and susceptibility were identified in a backcross population (D × W116) × D using random amplified polymorphic DNA and amplified fragment length polymorphic markers. A multi-locus region on linkage group 4 was found to contribute significantly to the resistance phenotype. The application of DNA markers to allow exploitation of this quantitatively inherited resistance in lucerne breeding is discussed.

Additional keywords

AFLP alfalfa Medicago sativa QTL RAPD 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bingham ET (1980) Maximising heterozygosity in autotetraploids. In ‘Polyploidy: biological relevance’. (Ed. WH Lewis) pp. 471–498. (Plenum Publishing Corporation: New York, NY)Google Scholar
  2. Brouwer DJ, Osborn TC (1997) Identification of RFLP markers linked to the unifoliate leaf, cauliflower head mutation of alfalfa. The Journal of Heredity 88, 150–152.Google Scholar
  3. Brouwer DJ, Osborn TC (1999) A molecular marker linkage map of tetraploid alfalfa (Medicago sativa L.). Theoretical and Applied Genetics 99, 1194–1200. doi: 10.1007/s001220051324CrossRefGoogle Scholar
  4. Brummer EC (1999) Capturing heterosis in forage crop cultivar development. Crop Science 39, 943–954.CrossRefGoogle Scholar
  5. Busbice TH (1969) Inbreeding in synthetic varieties. Crop Science 9, 601–604.CrossRefGoogle Scholar
  6. Cho SH, Chen WD, Muehlbauer FJ (2004) Pathotype-specific genetic factors in chickpea (Cicer arietinum L.) for quantitative resistance to Ascochyta blight. Theoretical and Applied Genetics 109, 733–739. doi: 10.1007/s00122-004-1693-xCrossRefPubMedGoogle Scholar
  7. Clements RJ, Turner JW, Irwin JAG, Langdon PW, Bray RA (1984) Breeding disease resistant, aphid resistant lucerne for sub tropical Queensland. Australian Journal of Experimental Agriculture and Animal Husbandry 24, 178–188. doi: 10.1071/EA9840178CrossRefGoogle Scholar
  8. Davis WH, Greenblatt IM (1967) Cytoplasmic male sterility in alfalfa. The Journal of Heredity 58, 301–305.Google Scholar
  9. Devine TE, Hanson CH, Ostazeski SA, Campbell TA (1971) Selection for resistance to anthracnose (Colletotrichum trifolii) in four alfalfa populations. Crop Science 25, 854–855.CrossRefGoogle Scholar
  10. Elgin JH, O’Neill NR (1988) Comparison of genes controlling race 1 anthracnose resistance in Arc-1 and Saranac AR alfalfa. Crop Science 28, 657–659.CrossRefGoogle Scholar
  11. Elgin JH, McMurtrey JE, Hartman BJ, Thyr BD, Sorensen EL, et al. (1983) Use of strain crosses in the development of multiple pest resistant alfalfa with improved field performance. Crop Science 23, 57–64.CrossRefGoogle Scholar
  12. Hill MJ (1996) Potential adaptation zones for temperate pasture species as constrained by climate: a knowledge-based logical modelling approach. Australian Journal of Agricultural Research 47, 1095–1117. doi: 10.1071/AR9961095CrossRefGoogle Scholar
  13. Irwin JAG (1977) Factors contributing to poor lucerne persistence in southern Queensland. Australian Journal of Experimental Agriculture and Animal Husbandry 17, 998–1003. doi: 10.1071/EA9770998CrossRefGoogle Scholar
  14. Irwin JAG, Lloyd DL, Bray RA, Langdon PW (1980) Selection for resistance to Colletotrichum trifolii in the lucerne cultivars Hunter River and Siro Peruvian. Australian Journal of Experimental Agriculture 20, 447–451. doi: 10.1071/EA9800447CrossRefGoogle Scholar
  15. Irwin JAG, Lloyd DL, Lowe KF (2001) Lucerne biology and genetic improvement — an analysis of past activities and future goals in Australia. Australian Journal of Agricultural Research 52, 699–712. doi: 10.1071/AR00181CrossRefGoogle Scholar
  16. Julier B, Fajoulot S, Barre P, Cardinet G, Santoni S, et al. (2003) Construction of two genetic linkage maps in cultivated tetraploid alfalfa (Medicago sativa) using microsatellite and AFLP markers. BMC Plant Biology 3, 1–19. doi: 10.1186/1471-2229-3-9CrossRefGoogle Scholar
  17. Kiss GB, Csanádi G, Kálmán K, Kaló P, Okrész L (1993) Construction of a basic genetic map for alfalfa using RFLP, RAPD, isozyme and morphological markers. Molecular & General Genetics 238, 129–137.Google Scholar
  18. Lesins K, Gillies CG (1972) Taxonomy and cytogenetics of Medicago. In ‘Alfalfa science and technology. Agronomy 15’. (Ed. CH Hanson) pp. 53–86. (American Society of Agronomy and Crop Science Society of America: Madison, WI)Google Scholar
  19. Mackie JM, Irwin JAG (1998) Genetics and race variability of the lucerne — Colletotrichum trifolii pathosystem in Australia. Australian Journal of Agricultural Research 49, 713–722. doi: 10.1071/A97133CrossRefGoogle Scholar
  20. Mackie JM, Musial JM, O’Neill NR, Irwin JAG (2003) Pathogenic specialisation within Colletotrichum trifolii in Australia, and lucerne cultivar reactions to all known Australian pathotypes. Australian Journal of Agricultural Research 54, 829–836. doi: 10.1071/AR03079CrossRefGoogle Scholar
  21. Manly KF, Cudmore RH, Meer JM (2001) Map Manager QTX, cross platform software for genetic mapping. Mammalian Genome 12, 930–932. doi: 10.1007/s00335-001-1016-3CrossRefPubMedGoogle Scholar
  22. Michaud R, Lehman WF, Rumbaugh MD (1988) World distribution and historical development. In ‘Alfalfa and alfalfa improvement. Agronomy Monograph 29’. (Eds AA Hanson, DK Barnes, RR Hill Jr) pp. 25–91. (American Society of Agronomy: Madison, WI)Google Scholar
  23. Miller D, Melton B, Currier C (1987) Midparent values as indicators of performance of alfalfa strain crosses. Crop Science 27, 1–4.CrossRefGoogle Scholar
  24. Musial JM, Basford KE, Irwin JAG (2002) Analysis of genetic diversity within Australian lucerne cultivars and implications for future genetic improvement. Australian Journal of Agricultural Research 53, 629–636. doi: 10.1071/AR01178CrossRefGoogle Scholar
  25. Musial JM, Aitken KS, Mackie JM, Irwin JAG (2005) A genetic linkage map in autotetraploid lucerne adapted to northern Australia, and use of the map to identify DNA markers linked to resistance to Phytophthora medicaginis. Australian Journal of Agricultural Research 56, 333–344. doi: 10.1071/AR04317CrossRefGoogle Scholar
  26. Musial JM, Lowe KF, Mackie JM, Aitken KS, Irwin JAG (2006) DNA markers linked to yield, yield components, and morphological traits in autotetraploid lucerne (Medicago sativa L.). Australian Journal of Agricultural Research 57, 801–810. doi: 10.1071/AR05390CrossRefGoogle Scholar
  27. O’Neill NR (1996) Pathogenic variability and host resistance in the Colletotrichum trifolii/Medicago sativa pathosystem. Plant Disease 80, 450–457.CrossRefGoogle Scholar
  28. Oram RN (1990) ‘Register of Australian herbage plant cultivars.’ 3rd edn. (CSIRO Publishing: Melbourne)Google Scholar
  29. Ostazeski SA, Elgin JH (1982) Use of hypodermic inoculation of alfalfa for identifying host reactions and races of Colletotrichum trifolii. Crop Science 22, 545–546.CrossRefGoogle Scholar
  30. Pearson CJ, Brown R, Collins WJ, Archer KA, Wood MS, et al. (1997) An Australian temperate pastures database. Australian Journal of Agricultural Research 48, 453–465. doi: 10.1071/A96095CrossRefGoogle Scholar
  31. Riday H, Brummer EC (2002) Forage yield heterosis in alfalfa. Crop Science 42, 716–723.CrossRefGoogle Scholar
  32. Rogers VE, Irwin JAG, Stovold G (1978) The development of lucerne with resistance to root rot in poorly aerated soils. Australian Journal of Experimental Agriculture and Animal Husbandry 18, 434–441. doi: 10.1071/EA9780434CrossRefGoogle Scholar
  33. Rumney J, Kimmell J, Melton B, Currier C (1987) Reciprocal differences in bee-pollinated alfalfa strain crosses are an indication of crossing patterns and aids to selection. Crop Science 27, 687–691.CrossRefGoogle Scholar
  34. Tysdal HM, Kiesselbach TA, Westover HL (1942) Alfalfa breeding. Nebraska Agricultural Experiment Station Research Bulletin 124.Google Scholar

Copyright information

© Australasian Plant Pathology Society 2006

Authors and Affiliations

  • J. A. G. Irwin
    • 1
    Email author
  • K. S. Aitken
    • 2
  • J. M. Mackie
    • 1
  • J. M. Musial
    • 1
  1. 1.Cooperative Research Centre for Tropical Plant ProtectionThe University of QueenslandBrisbaneAustralia
  2. 2.Queensland Bioscience PrecinctCSIRO Plant IndustrySt LuciaAustralia

Personalised recommendations