Australasian Plant Pathology

, Volume 35, Issue 5, pp 521–548 | Cite as

Cytospora species (Ascomycota, Diaporthales, Valsaceae): introduced and native pathogens of trees in South Africa

  • G. C. AdamsEmail author
  • J. Roux
  • M. J. Wingfield


Cytospora spp. (anamorphs of Valsa spp.) are common inhabitants of woody plants and they include important stem and branch canker pathogens. Isolates of these fungi were collected from diseased and healthy trees in South Africa. They were identified based on morphology and DNA sequence homology of the intertransgenic spacer ribosomal DNA. South African isolates were compared with isolates collected in other parts of the world, and they represented 25 genetically distinct sequences residing within the populations of 13–14 known species and three unique lineages. Several species are new records for South Africa, doubling previous reports of these fungi from the country. Similarities between South African isolates of Cytospora from non-native Eucalyptus, Malus, Pinus, Populus, Prunus and Salix species and isolates from Australia, Europe or America suggest that the fungal pathogens were imported with their hosts as endophytes. Isolates from indigenous Olea and Acacia appear to represent native populations. Host shifts were evident, including populations on Eucalyptus that also occurred on Mangifera, Populus, Sequoia, Tibouchina and Vitex. Isolates related to Valsa kunzei represent the first report of a Cytospora species on the widely cultivated timber tree, Pinus radiata. An identification key to Cytospora species in South Africa is included.

Additional keywords

forestry genetic tree key phylogeny 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams GC, Surve-Iyer RS, Iezzoni A (2002) Ribosomal DNA sequence divergence and group I introns within Leucostoma species, L. cinctum, L. persoonii, and L. parapersoonii sp. nov., ascomycetes that cause Cytospora canker of fruit trees. Mycologia 94, 947–967.CrossRefPubMedGoogle Scholar
  2. Adams GC, Wingfield MJ, Common R, Roux J (2005) Phylogenetic relationships and morphology of Cytospora species and related teleomorphs (Ascomycota, Diaporthales, Valsaceae) from Eucalyptus. Studies in Mycology 52, 1–149.Google Scholar
  3. Barr ME (1978) ‘The Diaporthales in North America.’ Mycological Memoir no. 6. (J. Cramer Publisher: Lehre, Germany)Google Scholar
  4. Bettucci L, Saravay M (1993) Endophytic fungi in Eucalyptus globulus: a preliminary study. Mycological Research 97, 679–682.CrossRefGoogle Scholar
  5. Biggs AR (1989) Integrated control of Leucostoma canker of peach in Ontario. Plant Disease 73, 869–874.CrossRefGoogle Scholar
  6. Bills GF (1996) Isolation and analysis of endophytic fungal communities from woody plants. In ‘Endophytic fungi in grasses and woody plants: systematics, ecology, and evolution’. (Eds SC Redlin, LM Carris) pp. 31–65. (APS Press: St Paul, MN)Google Scholar
  7. Castlebury LA, Rossman AY, Jaklitsch WJ, Vasilyeva LN (2002) A preliminary overview of the Diaporthales based on large subunit nuclear ribosomal DNA sequences. Mycologia 94, 1017–1031.CrossRefPubMedGoogle Scholar
  8. Chang LS, Iezzoni A, Adams GC, Ewers F (1991) Hydraulic conductivity in susceptible versus tolerant peach seedlings infected with Leucostoma persoonii. Journal of the American Society for Horticultural Science 116, 831–834.Google Scholar
  9. Chapela IH (1989) Fungi in healthy stems and branches of American beech and aspen: a comparative study. New Phytologist 113, 65–75. doi: 10.1111/j.1469-8137.1989.tb02396.xCrossRefGoogle Scholar
  10. Chapela IH, Boddy L (1988) Fungal colonization of attached beech branches. II. Spatial and temporal organization of communities arising from latent invaders in bark and functional sapwood under different moisture regimes. New Phytologist 110, 47–57. doi: 10.1111/j.1469-8137.1988.tb00236.xCrossRefGoogle Scholar
  11. Christensen CM (1940) Studies on the biology of Valsa sordida and Cytospora chrysosperma. Phytopathology 30, 459–475.Google Scholar
  12. Crous PW, Wingfield MJ, Koch SH (1990) New and interesting records of South African fungi. X. New records of Eucalyptus leaf fungi. South African Journal of Botany 56, 583–586.Google Scholar
  13. Crous PW, Phillips AJL, Baxter AP (2000) ‘Phytopathogenic fungi from South Africa.’ (University of Stellenbosch Printers, Department of Plant Pathology Press: Stellenbosch, South Africa)Google Scholar
  14. Défago G (1935) Die quelques Valsées v. Höhnel, parasites des arbres à noyaux déperissants. Beiträge zur Kryptogamenflora der Schweiz 8, 1–109.Google Scholar
  15. Défago G (1942) Seconde contribution à le connaissance des Valsées v.H. Phytopathologische Zeitschrift 14, 103–147.Google Scholar
  16. Doidge EM (1941) Some South African Valsaceae. Bothalia 4, 47–74.Google Scholar
  17. Doidge EM (1950) The South African fungi and lichens to the end of 1945. Bothalia 5, 1–1094.Google Scholar
  18. Doidge EM, Bottomley AM, van der Plank JE, Pauer GD (1953) A revised list of plant diseases in South Africa. South African Department of Agricultural Science Bulletin 346, 1–122.Google Scholar
  19. Ehrenberg CG (1818) ‘Sylvae Mycologicae Berolinenses.’ (Formis Theophili Bruschcke: Berlin, Germany)Google Scholar
  20. Espinosa-Garcia FJ, Langenheim JH (1990) The leaf fungal endophytic community of a coastal redwood population-diversity and spatial patterns. New Phytologist 116, 89–97. doi: 10.1111/j.1469-8137.1990.tb00513.xCrossRefGoogle Scholar
  21. Farr DF, Bills GF, Chamuris GP, Rossman AY (1989) ‘Fungi on plants and plant products in the United States.’ (APS Press: St Paul, MN)Google Scholar
  22. Felsenstein J (1981) Evolutionary trees from DNA sequences: a Maximum Likelihood approach. Journal of Molecular Evolution 17, 368–376. doi: 10.1007/BF01734359CrossRefPubMedGoogle Scholar
  23. Felsenstein J (1985) Confidence intervals on phylogenies: an approach using bootstrap. Evolution 39, 783–791. doi: 10.2307/2408678CrossRefGoogle Scholar
  24. Fisher PJ, Petrini O, Sutton BC (1993) A comparative study of fungal endophytes from leaves, xylem and bark of Eucalyptus nitens in Australia and England. Sydowia 45, 338–345.Google Scholar
  25. Gorter GJMA (1977) Index of plant pathogens and the diseases they cause in cultivated plants in South Africa. Department of Agricultural Technical Services, Plant Protection Research Institute, Science Bulletin No. 392, Pretoria, South Africa.Google Scholar
  26. Gorter GJMA (1981) Index of plant pathogens (II) and the diseases they cause in wild growing plants in South Africa. Republic of South Africa, Department of Agriculture and Fisheries, Science Bulletin No. 398, Pretoria, South Africa.Google Scholar
  27. Gorter GJMA (1982) Supplement to index of plant pathogens (I) and the disease they cause in cultivated plants in South Africa. Republic of South Africa, Department of Agriculture, Scientific Bulletin 392, 1–14.Google Scholar
  28. Grove WB (1935) ‘British stem- and leaf-fungi. Vol. 1. Sphaeropsidales.’ (Cambridge University Press: Cambridge)Google Scholar
  29. Gryzenhout M, Myburg H, van der Merwe NA, Wingfield BD, Wingfield MJ (2004) Chrysoporthe, a new genus to accommodate Cryphonectria cubensis. Studies in Mycology 50, 119–142.Google Scholar
  30. Gutner LS (1935) Contributions to a monograph of the genus Cytospora. Trudy Botanicheskogo Instituta Akademii Nauk SSSR, Ser. 2. Sporovye Rasteniya 2, 411–484.Google Scholar
  31. Gvritishvili MN (1982) ‘The fungal genus Cytospora in the USSR.’ (Izdatelstve Sabchota Sakarstvelo: Tbilisi)Google Scholar
  32. Hallen HE, Watling R, Adams GC (2003) Taxonomy and toxicity of Conocybe lactea and related species. Mycological Research 107, 969–979. doi: 10.1017/S0953756203008190CrossRefPubMedGoogle Scholar
  33. Hayova VP, Minter DW (1998a) Leucostoma cinctum. IMI Descriptions of Fungi and Bacteria, No. 1361. (CAB International: Surrey)Google Scholar
  34. Hayova VP, Minter DW (1998b) Leucostoma niveum. In ‘IMI Descriptions of Fungi and Bacteria’, No. 1362. (CAB International: Surrey)Google Scholar
  35. Hayova VP, Minter DW (1998c) Valsa ambiens subsp. ambiens. In ‘IMI Descriptions of Fungi and Bacteria’, No. 1364. (CAB International: Surrey)Google Scholar
  36. Hayova VP, Minter DW (1998d) Valsa ambiens subsp. leucostomoides. In ‘IMI Descriptions of Fungi and Bacteria’, No. 1365. (CAB International: Surrey)Google Scholar
  37. Hayova VP, Minter DW (1998e) Valsa ceratosperma. In ‘IMI Descriptions of Fungi and Bacteria’, No. 1366. (CAB International: Surrey)Google Scholar
  38. Hayova VP, Minter DW (1998f) Valsa cypri. In ‘IMI Descriptions of Fungi and Bacteria’, No. 1367. (CAB International: Surrey)Google Scholar
  39. Hayova VP, Minter DW (1998g) Valsa malicola. In ‘IMI Descriptions of Fungi and Bacteria’, No. 1368. (CAB International: Surrey)Google Scholar
  40. Hayova VP, Minter DW (1998h) Valsa salicina. In ‘IMI Descriptions of Fungi and Bacteria’, No. 1369. (CAB International: Surrey)Google Scholar
  41. Hayova VP, Minter DW (1998i) Valsa sordida. In ‘IMI Descriptions of Fungi and Bacteria’, No. 1370. (CAB International: Surrey)Google Scholar
  42. Hedges SB (1992) The number of replications needed for accurate estimation of the bootstrap P value in phylogenetic studies. Molecular Biology and Evolution 9, 366–369.PubMedGoogle Scholar
  43. von Höhnel F (1914) Fragmente zur Mykologie 863. Über Dendrophoma pruinosa (Fr.) Sacc. Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften zu Wien, Mathematisch-Naturwissenschaftliche Klasse, Abteilung 1 123, 84–86.Google Scholar
  44. von Höhnel F (1917) System der Diaportheen. Berichte der Deutschen Botanischen Gesellschaft 35, 631–638.Google Scholar
  45. von Höhnel F (1919) Zu meinem System der Diaportheen. Annales Mycologici 17, 131.Google Scholar
  46. von Höhnel F (1928) Über Cytospora melanodiscus (Otth.) Höhn. Mitteilungen aus dem Botanischen Laboratorium der Technischen Hochschule in Wien 5, 16–18.Google Scholar
  47. Hubbes M (1960) Systematisches und physiologische Untersuchungen an Valséen auf Weiden. Phytopathologische Zeitschrift 39, 65–93.CrossRefGoogle Scholar
  48. Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogeny. Bioinformatics 17, 754–755. doi: 10.1093/bioinformatics/17.8.754CrossRefPubMedGoogle Scholar
  49. Kalkanci A, Kustimur S, Sucak GT, Senol E, Sugita T, et al. (2006) Fulminating fungal sinusitis caused by Valsa sordida, a plant pathogen, in a patient immunocompromised by acute myeloid leukemia. Medical Mycology 44, 501–509.CrossRefGoogle Scholar
  50. Kepley JB, Jacobi WR (2000) Pathogenicity of Cytospora fungi on six hardwood species. Journal of Aboriculture 26, 326–332.Google Scholar
  51. Kirk PE, et al. (2004) Index Fungorum. Available at http://www. (verified 4 August 2004)Google Scholar
  52. Kishino H, Hasegawa M (1989) Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order of the Hominoidea. Journal of Molecular Evolution 29, 170–179. doi: 10.1007/BF02100115CrossRefPubMedGoogle Scholar
  53. Kobayashi T (1970) Taxonomic studies of Japanese Diaporthaceae with special reference to their life histories. Government Forest Research Experiment Station, Bulletin No. 226, Japan.Google Scholar
  54. Larget B, Simon D (1999) Markov chain Monte Carlo algorithms for the Bayesian analysis of phylogenetic trees. Molecular Biology and Evolution 16, 750–759.Google Scholar
  55. Müller E, von Arx JA (1973) Pyrenomycetes: meliolales, coronophorales, sphaeriales. In ‘The fungi IVA’. (Eds GC Ainsworth, FK Sparrow, AS Sussman) pp. 87–132. (Academic Press: New York, NY)Google Scholar
  56. Myburg H, Gryzenhout M, Wingfield BD, Stipes RJ, Wingfield MJ (2004) Phylogenetic relationships of Cryphonectria and Endothia species, based on DNA sequence data and morphology. Mycologia 96, 990–1001.CrossRefPubMedGoogle Scholar
  57. Nannfeldt JA (1932) Studien über die Morphologie und Systematik der nicht-lichenisierten, inoperculaten Discomyceten. Nova Acta Regiae Societatis Scienctiarum Uppsaliensis, Series 4 8, 1–368.Google Scholar
  58. Page RD (1996) TreeView: an application to display phylogenetic trees on personal computers. Computer Applications in the Biosciences 12, 357–358.PubMedGoogle Scholar
  59. von Petrak F (1919) Mycologische Notize. I. Annales Mycologici 17, 59–100.Google Scholar
  60. von Petrak F (1969) Ergebnisse einer Revision der Grundtypen verschiedener Gattungen der Ascomyceten und Fungi imperfecti. Sydowia 23, 265–272.Google Scholar
  61. Petrini O (1991) Fungal endophytes of tree leaves. In ‘Microbial ecology of leaves’. (Eds JH Andrews, SS Hirano) pp. 179–197. (Springer Verlag: New York, NY)Google Scholar
  62. Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14, 817–818. doi: 10.1093/ bioinformatics/14.9.817CrossRefPubMedGoogle Scholar
  63. Proffer TJ, Hart JH (1988) Vegetative incompatibility groups in Leucocytospora kunzei. Phytopathology 78, 256–260.CrossRefGoogle Scholar
  64. Redlin SC, Carris LM (Eds) (1996) Endophytic fungi in grasses and woody plants: systematics, ecology, and evolution. (APS Press: St Paul, MN)Google Scholar
  65. Ronquist F, Huelsenbeck JP (2002) ‘MrBayes 3: Bayesian phylogenetic inference using mixed models. Version 3.0b4.’ (Uppsala University: Uppsala)Google Scholar
  66. Schoeneweiss DF (1975) Predisposition, stress and plant disease. Annual Review of Phytopathology 13, 193–211. doi: 10.1146/ Scholar
  67. Schoeneweiss DF (1983) Drought predisposition to Cytospora canker in blue spruce. Plant Disease 67, 383–385.CrossRefGoogle Scholar
  68. Sinclair WA, Lyon HH, Johnson WT (1987) ‘Diseases of trees and shrubs.’ (Cornell University Press: Ithaca, NY)Google Scholar
  69. Sivanesan A, Holliday P (1970) Valsa eugeniae. In ‘CMI Descriptions of Pathogenic Fungi and Bacteria’, No. 230. (CAB International: Surrey)Google Scholar
  70. Sivanesan A (1983) Cytospora sacchari. In ‘CMI Descriptions of Pathogenic Fungi and Bacteria’, No. 777. (CAB International: Surrey)Google Scholar
  71. Slippers B, Stenlid J, Wingfield MJ (2005) Emerging pathogens: fungal host jumps following anthropogenic introduction. Trends in Ecology & Evolution 20, 420–421. doi: 10.1016/j.tree.2005.05.002CrossRefGoogle Scholar
  72. Smit WA, Adams GC (1999) Identification of Leucostoma species isolated from apple and stone fruit cultivars in South Africa. Phytopathology 89, S73.Google Scholar
  73. Smith H, Wingfield MJ, Petrini O (1996) Botryosphaeria dothidea endophytic in Eucalyptus grandis and Eucalyptus nitens in South Africa. Forest Ecology and Management 89, 189–195. doi: 10.1016/S0378-1127(96)03847-9CrossRefGoogle Scholar
  74. Spielman LJ (1983) Taxonomy and biology of Valsa species on hardwoods in North America, with special reference to species on maples. PhD thesis. Cornell University, Ithaca, USA.Google Scholar
  75. Spielman LJ (1985) A monograph of Valsa on hardwoods in North America. Canadian Journal of Botany 63, 1355–1387.CrossRefGoogle Scholar
  76. Swofford DL (2003) ‘PAUP*: Phylogenetic Analysis Using Parsimony. Version 4.0 Beta 10.’ (Sinauer Associates: New York, NY)Google Scholar
  77. Swofford DL, Maddison WP (1987) Reconstructing ancestral character states under Wagner parsimony. Mathematical Biosciences 87, 199–229. doi: 10.1016/0025-5564(87)90074-5CrossRefGoogle Scholar
  78. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTALW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Research 22, 4673–4680.CrossRefPubMedGoogle Scholar
  79. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research 25, 4876–4882. doi: 10.1093/nar/25.24.4876CrossRefPubMedGoogle Scholar
  80. Tulasne LR, Tulasne C (1863) ‘Selecta fungorum carpologia, Xylariei, Valsei, Sphaeriei. Vol. 2.’ (The Imperial Press: Paris, France)Google Scholar
  81. Urban Z (1957) Vorläufige Mitteilung der Ergebnisse einer Revision der Gattungen Valsa and Valsella. Prestia 29, 394–395.Google Scholar
  82. Vasilyeva LN (1994) ‘Pyrenomycetes of the Russian Far East, 2. Valsaceae.’ (Institute of Biology and Pedology, Far East Branch of the Russian Academy of Sciences: Vladivostok, Russia)Google Scholar
  83. Waterman AM (1955) The relation of Valsa kunzei to cankers on conifers. Phytopathology 45, 686–692.Google Scholar
  84. Wehmeyer LE (1936) Cutlure studies of three new Pyrenomycetes. Mycologia 28, 35–46.CrossRefGoogle Scholar
  85. van der Westhuizen GCA (1965a) Cytospora eucalypticola sp. nov. on Eucalyptus saligna from Northern Transvaal. South African Forestry Journal 54, 8–11.Google Scholar
  86. van der Westhuizen GCA (1965b) A disease of young Eucalyptus saligna in Northern Transvaal. South African Forestry Journal 54, 12–16.Google Scholar
  87. White TJ, Bruns TD, Lee SB, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNAgenes for phylogenetics. In ‘PCR protocols, a guide to methods and applications’. (Eds MA Innis, DH Gelfand, JJ Sninsky, TJ White) pp. 315–322. (Academic Press: New York, NY)Google Scholar
  88. Wingfield MJ, Slippers B, Roux J, Wingfield BD (2001) Worldwide movement of exotic forest fungi, especially in the tropics and the Southern Hemisphere. Bioscience 51, 134–140. doi: 10.1641/0006-3568(2001)051[0134:WMOEFF]2.0.CO;2CrossRefGoogle Scholar
  89. Wingfield MJ (2003) Increasing threat of diseases to exotic plantation forests in the Southern Hemisphere: lessons from Cryphonectria canker. Australasian Plant Pathology 32, 133–139. doi: 10.1071/AP03024CrossRefGoogle Scholar

Copyright information

© Australasian Plant Pathology Society 2006

Authors and Affiliations

  1. 1.Department of Plant PathologyMichigan State UniversityEast LansingUSA
  2. 2.Forestry and Agricultural Biotechnology InstituteUniversity of Pretoria, Tree Protection Cooperative ProgrammePretoriaSouth Africa

Personalised recommendations