Australasian Plant Pathology

, Volume 35, Issue 5, pp 513–520 | Cite as

Phylogenetic relationships among Armillaria species inferred from partial elongation factor 1-alpha DNA sequence data

  • L. Maphosa
  • B. D. WingfieldEmail author
  • M. P. A. Coetzee
  • E. Mwenje
  • M. J. Wingfield


Armillaria species are important root rot pathogens with a wide host range and a worldwide distribution. The taxonomy of these fungi has been problematic for many years but the understanding of the relationships between them has been substantially improved through the application of DNA sequence comparisons. In this study, relationships between different Armillaria species were determined using elongation factor 1-alpha DNA sequence data for the first time. A total of 42 isolates, representing the majority of Armillaria species, with diverse geographic distributions and hosts, were included in this study. PCR amplification yielded products of 600 bp for all the isolates. Phylogenetic trees resulting from parsimony analysis showed that this gene region is useful for studying relationships between species. Generally, results were similar to those emerging from previous comparisons using ITS and IGS-1 sequence data. Phylogenetic trees generated from the dataset grouped the African taxa in a strongly supported clade, basal to the rest of the Armillaria species included in the study. The Armillaria species originating from the Northern Hemisphere formed a monophyletic group. Within this group, isolates of A. mellea constituted four subclades, representing their geographical origin. The phylogenetic relationships among species from the Southern Hemisphere were not entirely resolved. However, A. pallidula, A. fumosa and A. hinnulea grouped in a strongly supported clade and isolates of A. limonea formed a sister clade with those of A. luteobubalina. This is the first time a single-copy protein coding gene has been used to study phylogenetic relationships in Armillaria, and overall the data support previously held views regarding the relationships between species.

Additional keywords

Armillaria root rot EF 1-α evolution basidiomycetes Tricholomataceae taxonomy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson JB, Stasovski E (1992) Molecular phylogeny of Northern Hemisphere species of Armillaria. Armillaria. Mycologia 84, 505–516.CrossRefGoogle Scholar
  2. Anderson JB, Ullrich RC (1979) Biological species of Armillaria mellea in North America. Mycologia 71, 402–414.CrossRefGoogle Scholar
  3. Anderson JB, Korhonen K, Ullrich RC (1980) Relationships between European and North American biological species of Armillaria mellea. Experimental Mycology 4, 78–86. doi: 10.1016/0147-5975(80)90053-5CrossRefGoogle Scholar
  4. Anderson JB, Bailey SS, Pukkila PJ (1989) Variation in ribosomal DNA among biological species of Armillaria, a genus of root-infecting fungi. Evolution 43, 1652–1662. doi: 10.2307/2409381CrossRefGoogle Scholar
  5. Baayen RP, O’Donnell K, Bonants PJM, Cigelnik E, Kroon LPNM, Roebroeck JA, Waalwijk C (2000) Gene genealogies and AFLP analysis in the Fusarium oxysporium complex identify monophyletic and nonmonophyletic formae speciales causing wilt and root disease. Phytopathology 90, 891–900.CrossRefPubMedGoogle Scholar
  6. Bérubé JA, Dessureault M (1989) Morphological studies of the A. mellea complex: two new species, A. gemina and A. calvescens. Mycologia 81, 216–225.CrossRefGoogle Scholar
  7. Burdsall HH, Banik M, Cook ME (1990) Serological differences of three species of Armillaria and Lentinula edodes by enzyme-linked immunosorbent assay using immunized chickens as sources of antibodies. Mycologia 82, 415–423.CrossRefGoogle Scholar
  8. Chillali M, Idder-Ighil H, Guillaumin J-J, Mohammed C, Escarmant BL, Botton B (1998) Variation in the ITS and IGS regions of ribosomal DNA among the biological species of European Armillaria. Mycological Research 102, 533–540. doi: 10.1017/S0953756297005315CrossRefGoogle Scholar
  9. Coetzee MPA, Wingfield BD, Harrington TC, Dalevi D, Coutinho TA, Wingfield MJ (2000a) Geographic diversity of Armillaria mellea s.s based on phylogenetic analysis. Mycologia 92, 105–113.CrossRefGoogle Scholar
  10. Coetzee MPA, Wingfield BD, Coutinho TA, Wingfield MJ (2000b) Identification of the casual agent of Armillaria root rot of Pinus species in South Africa. Mycologia 92, 777–785.CrossRefGoogle Scholar
  11. Coetzee MPA, Wingfield BD, Bloomer P, Ridley GS, Kile GA, Wingfield MJ (2001) Phylogenetic relationships of Australian and New Zealand Armillaria species. Mycologia 93, 887–896.CrossRefGoogle Scholar
  12. Coetzee MPA, Wingfield BD, Bloomer P, Ridley GS, Wingfield MJ (2003) Molecular identification and phylogeny of Armillaria isolates from South America and Indo-Malaysia. Mycologia 95, 285–293.CrossRefPubMedGoogle Scholar
  13. Coetzee MPA, Wingfield BD, Bloomer P, Wingfield MJ (2005) Phylogenetic analyses of DNA sequences reveal species partitions amongst isolates of Armillaria from Africa. Mycological Research 109, 1223–1234. doi: 10.1017/S095375620500393XCrossRefPubMedGoogle Scholar
  14. Dunne CP, Glen M, Tommerup IC, Shearer BL, Hardy GESt J (2002) Sequence variation in the rDNAITS of Australian Armillaria species and intra-specific variation in A. luteobubalina. Australasian Plant Pathology 31, 241–251. doi: 10.1071/AP02015CrossRefGoogle Scholar
  15. Felsenstein J (1985) Confidence limits on phylogenies: an approach using bootstrap. Evolution 39, 783–791. doi: 10.2307/2408678CrossRefGoogle Scholar
  16. Harrington TC, Wingfield BD (1995) A PCR-based identification method for species of Armillaria. Mycologia 87, 280–288.CrossRefGoogle Scholar
  17. Hillis DM, Huelsenbeck JP (1992) Signal, noise, and reliability in molecular phylogenetic analysis. The Journal of Heredity 83, 189–195.PubMedGoogle Scholar
  18. Jiménez-Gasco MM, Milgroom MG, Diaz-Jimenez RM (2002) Gene genealogies support Fusarium oxysporum f.sp. ciceris as a monophyletic group. Plant Pathology 51, 72–77. doi: 10.1046/j.0032-0862.2001.xCrossRefGoogle Scholar
  19. Kauserud H, Schumacher T (2001) Outcrossing or inbreeding: DNA markers provide evidence for type of reproductive mode in Phellinus nigrolimitatus (Basidiomycota). Mycological Research 53, 220–230.Google Scholar
  20. Kile GA, Watling R (1981) An expanded concept of Armillaria luteobubalina. Transactions of the British Mycological Society 81, 129–140.CrossRefGoogle Scholar
  21. Kile GA, Watling R (1983) Armillaria species from South-Eastern Australia. Transactions of the British Mycological Society 81, 129–140.CrossRefGoogle Scholar
  22. Kile GA, Watling R (1988) Identification and occurrence of Australian Armillaria species, including A. pallidula sp. nov. and comparative studies between them and non-Australian tropical and Indian Armillaria. Transactions of the British Mycological Society 91, 305–315.CrossRefGoogle Scholar
  23. Korhonen K (1978) Interfertility and clonal size in the Armillariella mellea complex. Karstenia 18, 31–42.Google Scholar
  24. Korhonen K (1995) Armillaria since Elias Fries. Acta Universitatis Upsaliensis. Symbolae Botanicae Upsalienses 30, 153–161.Google Scholar
  25. Lin D, Duma MT, Hubbes M (1989) Isozyme and general protein patterns of Armillaria spp. collected from the boreal mixed wood forest of Ontario. Canadian Journal of Botany 67, 1143–1177.Google Scholar
  26. Maniatis T, Fritsch EF, Sambrook J (1982) ‘Molecular cloning: a laboratory manual.’ (Cold Spring Harbour Laboratory: Cold Spring Harbour, NY)Google Scholar
  27. Marxmüller H (1992) Some notes on the taxonomy and nomenclature of five European Armillaria species. Mycotaxon 44, 267–274.Google Scholar
  28. Miller OK, Johnson JL, Burdsall HH, Flynn T (1994) Species delimitation in North American species of Armillaria as measured by DNA reassociation. Mycological Research 98, 1005–1011.CrossRefGoogle Scholar
  29. Mohammed C, Guillaumin J-J, Berthelay S (1989) Preliminary investigations about the taxonomy and genetics of African Armillaria species. In ‘Proceedings of the 7th International Conference on Root and Butt Rots, 1988’. (Ed. DJ Morrison) pp. 447–457. (International Union of Forest Research Organizations: Vernon and Victoria, BC)Google Scholar
  30. Morrison DJ, Thomson DC, Peet FG, Sahota TS, Rink U (1985) Isozyme patterns of Armillaria intersterility groups in British Columbia. Canadian Journal of Botany 31, 651–653.Google Scholar
  31. Mwenje E, Ride JP (1996) Morphological and biochemical characterisation of Armillaria isolates from Zimbabwe. Plant Pathology 45, 1036–1051. doi: 10.1046/j.1365-3059.1996.d01-184.xCrossRefGoogle Scholar
  32. Mwenje E, Ride JP (1997) The use of pectic enzymes in the characterization of Armillaria isolates from Africa. Plant Pathology 46, 341–354. doi: 10.1046/j.1365-3059.1997.d01-30.xCrossRefGoogle Scholar
  33. Mwenje E, Wingfield BD, Coetzee MPA, Wingfield MJ (2003) Molecular characterization of Armillaria species from Zimbabwe. Mycological Research 107, 291–296. doi: 10.1017/S0953756203007408CrossRefPubMedGoogle Scholar
  34. Ota Y, Matsushita N, Nagasawa E, Terashita T, Fukuda K, Suzuki K (1998) Biological species of Armillaria in Japan. Plant Disease 82, 537–543.CrossRefGoogle Scholar
  35. Pérez-Sierra A, Guillaumin J-J, Spooner BM, Bridge PD (2004) Characterization of Armillaria heimii from Africa. Plant Pathology 53, 220–230. doi: 10.1111/j.0032-0862.2004.00999.xCrossRefGoogle Scholar
  36. Piercey-Normore MD, Egger KN, Bérubé JA (1998) Molecular phylogeny and evolutionary divergence of North American Biological Species of Armillaria. Molecular Phylogenetics and Evolution 10, 49–66. doi: 10.1006/mpev.1997.0485CrossRefPubMedGoogle Scholar
  37. Slobin LI (1980) The role of eukaryotic elongation factor Tu in protein synthesis. European Journal of Biochemistry 110, 555–563. doi: 10.1111/j.1432-1033.1980.tb04898.xCrossRefPubMedGoogle Scholar
  38. Swift MJ (1972) The ecology of Armillaria mellea (Vahl ex Fries) in indigenous and exotic woodlands of Rhodesia. Forestry 45, 67–86.CrossRefGoogle Scholar
  39. Swofford DL (1998) ‘PAUP*: Phylogenetic analysis using parsimony (*and other methods). Version 4.’ (Sinauer Associates: Sunderland, MA)Google Scholar
  40. Termorshuizen A, Arnolds E (1987) On the nomenclature of the European species of the Armillaria mellea group. Mycotaxon 30, 101–116.Google Scholar
  41. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research 25, 4876–4882. doi: 10.1093/nar/25.24.4876CrossRefPubMedGoogle Scholar
  42. Ullrich RC, Anderson JB (1978) Sex and diploidy in Armillaria mellea. Experimental Mycology 2, 119–129. doi: 10.1016/S0147-5975(78)80025-5CrossRefGoogle Scholar
  43. Volk TJ, Burdsall HH (1995). ‘A nomenclatural study of Armillaria and Armillariella species.’ (Synopsis Fungorum 8: Førde)Google Scholar
  44. Whalström K, Karlsson JO, Holdenrieder O, Stenlid J (1991) Pectinolytic activity and isozymes in European Armillaria species. Canadian Journal of Botany 69, 2732–2739.CrossRefGoogle Scholar

Copyright information

© Australasian Plant Pathology Society 2006

Authors and Affiliations

  • L. Maphosa
    • 1
  • B. D. Wingfield
    • 1
    Email author
  • M. P. A. Coetzee
    • 1
  • E. Mwenje
    • 2
  • M. J. Wingfield
    • 1
  1. 1.Department of Genetics, Forestry and Agricultural Biotechnology InstituteUniversity of PretoriaPretoriaSouth Africa
  2. 2.Department of Applied Biology and BiochemistryNational University of Science and TechnologyBulawayoZimbabwe

Personalised recommendations