Skip to main content
Log in

Renin-angiotensin-aldosterone system: Fundamental aspects and clinical implications in renal and cardiovascular disorders

  • Published:
Journal of Nuclear Cardiology Aims and scope

Abstract

The renin-angiotensin-aldosterone system (RAAS) exerts a principal influence in maintaining vascular tone, optimal salt and water homeostasis, and forward cardiac output in human beings. Overactivity of the RAAS can lead to pathologic consequences in states of diabetic nephropathy, hypertension, renal artery stenosis, left ventricular hypertrophy, coronary atherosclerosis, myocardial infarction, and congestive heart failure. In addition to fluid and hemodynamic effects, the RAAS may have a critical role in the activation of the sympathetic nervous system, the progression of atherosclerosis, the dysregulation of endothelial function, and the inhibition of the fibrinolytic system. Accumulated basic and clinical evidence supports the use of inhibitors of the RAAS, including aldosterone antagonists, angiotensin-converting enzyme inhibitors, and angiotensin receptor blockers, in treating hypertension, improving diabetic nephropathy, preventing or ameliorating congestive heart failure, and optimizing the prognosis after myocardial infarction. (J Nucl Cardiol 2003;10:184-96.)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Skeggs LT, Dorer FE, Kahn JR, Lentz KE, Levine M. The biochemistry of the renin-angiotensin system and its role in hypertension. Am J Med 1976;60:737–48.

    Article  PubMed  CAS  Google Scholar 

  2. Erdos EG. Angiotensin I converting enzyme and the changes in our concepts through the years. Hypertension 1990;16:363–70.

    PubMed  CAS  Google Scholar 

  3. Mitchell KD, Navar LG. The renin-angiotensin-aldosterone system in volume control. In: Paylis PH, editor. Bailliere’s clinical endocrinology and metabolism. 2nd ed. London: Bailliere Tindall; 1989. p. 393–430.

    Google Scholar 

  4. Dzau VJ. Cell biology and genetics of angiotensin in cardiovascular disease. J Hypertens 1994;12(Suppl 4):S3–10.

    CAS  Google Scholar 

  5. Muller DN, Luft FC. The renin-angiotensin system in the vessel wall. Basic Res Cardiol 1998;93(Suppl2):7–14.

    PubMed  Google Scholar 

  6. Dzau VJ, Re R. Tissue angiotensin system in cardiovascular medicine: a paradigm shift? Circulation 1994;89:493–8.

    PubMed  CAS  Google Scholar 

  7. Weir MR, Dzau VJ. The renin-angiotensin-aldosterone system: a specific target for hypertension management. Am J Hypertens 1999;12:205S-13S.

    Article  PubMed  CAS  Google Scholar 

  8. Rosenberg ME, Smith LJ, Correa-Rotter R, Hostetter TH. The paradox of the renin-angiotensin system in chronic renal disease. Kidney Int 1994;45:403–10.

    Article  PubMed  CAS  Google Scholar 

  9. Johnston CI. Renin-angiotensin system: a dual tissue and hormonal system for cardiovascular control. J Hypertens Suppl 1992;10:S13–26.

    PubMed  CAS  Google Scholar 

  10. Navar LG, Lewis L, Hymel A, Braam B, Mitchell KD. Tubular fluid concentrations and kidney contents of angiotensin I and II in anesthetized rats. J Am Soc Nephrol 1994;5:1153–8.

    PubMed  CAS  Google Scholar 

  11. Navar LG, Harrison-Bernard LM, Imig JD, et al. Intrarenal angiotensin II generation and renal effects of AT1 receptor blockade. J Am Soc Nephrol 1999;10:S266–72.

    PubMed  CAS  Google Scholar 

  12. Laragh JH, Angers M, Kelly WG, Lieberman S. Hypotensive agents and pressor substances: the effect of epinephrine, norepinephrine, angiotensin II, and others on the secretory rate of aldosterone in man. J Am Med Assoc 1960;174:234–40.

    CAS  Google Scholar 

  13. Garty H. Regulation of sodium permeability by aldosterone. Sem Nephrol 1992;12:24–9.

    CAS  Google Scholar 

  14. Wood AJJ. Angiotensin receptors and their antagonists. N Engl J Med 1996;334:1649–54.

    Article  Google Scholar 

  15. Unger T, Culman J, Gohlke P. Angiotensin II receptor blockade and end-organ protection: pharmacological rationale and evidence. J Hypertens 1998;16:S3–9.

    Article  CAS  Google Scholar 

  16. Duncan JA, Scholey JW, Miller JA. Angiotensin II type 1-receptor gene polymorphisms in humans: physiology and pathophysiology of the genotypes. Curr Opin Nephrol Hypertens 2001;10:111–66.

    Article  PubMed  CAS  Google Scholar 

  17. Siragy HM, Carey RM. Angiotensin type 2 receptors: potential importance in the regulation of blood pressure. Curr Opin Nephrol Hypertens 2001;10:99–103.

    Article  PubMed  CAS  Google Scholar 

  18. Tsutsami Y, Matsubara H, Masaki H, et al. Angiotensin II type 2 receptor overexpression activates the vascular kinin system and causes vasodilatation. J Clin Invest 1999;104:925–35.

    Article  Google Scholar 

  19. Arima S, Ito S. Angiotensin II type 2 receptors in the kidney: evidence for endothelial-cell-mediated renal vasodilatation. Nephrol Dial Transplant 2000;15:448–51.

    Article  PubMed  CAS  Google Scholar 

  20. Liu FY, Cogan MG. Angiotensin II stimulates early proximal bicarbonate absorption in the rat by decreasing cyclic adenosine monophosphate. J Clin Invest 1989;84:83–91.

    Article  PubMed  CAS  Google Scholar 

  21. Garvin JL. Angiotensin stimulates bicarbonate transport and Na+/K+ ATPase in rat proximal straight tubules. J Am Soc Nephrol 1991;1:1146–52.

    PubMed  CAS  Google Scholar 

  22. Wang T, Giebisch G. Effects of AII on electrolyte transport in the early and late distal tubule in rat kidney. Am J Physiol 1996;271:F143–99.

    PubMed  CAS  Google Scholar 

  23. Peti-Peterdi J, Warnock DG, Bell DP. Angiotensin II directly stimulates EnaC activity in the cortical collecting duct via AT1 receptors. J Am Soc Nephrol 2002;13:1131–5.

    Article  PubMed  CAS  Google Scholar 

  24. Wolf G. Angiotensin II as a mediator of tubulointerstitial injury. Nephrol Dial Transplant 2000;15:61–3.

    Article  PubMed  CAS  Google Scholar 

  25. Luft FC. Proinflammatory effects of angiotensin II and endothelin: targets for progression of cardiovascular and renal disease. Curr Opin Nephrol Hypertens 2002;11:59–66.

    Article  PubMed  Google Scholar 

  26. Tsuzuki S, Matoba T, Eguchi S, Inagami T. Angiotensin II type 2 receptor inhibits cell proliferation and activates tyrosine phosphatase. Hypertension 1996;28:916–8.

    PubMed  CAS  Google Scholar 

  27. Juknevicius I, Segal Y, Kren S, et al. Aldosterone causes TGF-α expression [abstract]. J Am Soc Nephrol 2000;11:622A.

    Google Scholar 

  28. Hostetter TH, Rosenberg ME, Ibrahim HN, Juknevicius I. Aldosterone in renal disease. Curr Opin Nephrol Hypertens 2001;10:105–100.

    Article  PubMed  CAS  Google Scholar 

  29. Parving HH. Diabetic nephropathy: prevention and treatment. Kidney Int 2001;60:2041–55.

    Article  PubMed  CAS  Google Scholar 

  30. Ritz E, Stefanski A. Diabetic nephropathy in type II diabetes. Am J Kidney Dis 1996;27:167–94.

    Article  PubMed  CAS  Google Scholar 

  31. Peterson JC, Adler S, Burkart JM, et al. Blood pressure control, proteinuria, and the progression of renal disease: the modification of diet in renal disease study. Ann Intern Med 1995;123:754–62.

    PubMed  CAS  Google Scholar 

  32. Jacobson HR. Chronic renal failure: pathophysiology. Lancet 1991;338:419–23.

    Article  PubMed  CAS  Google Scholar 

  33. Conlon PJ, O’Riordan E, Kalra PA. New insights into the epidemiology and clinical manifestations of atherosclerotic renovascular disease. Am J Kidney Dis 2000;35:573–87.

    Article  PubMed  CAS  Google Scholar 

  34. Suresh M, Laboi P, Mamtors H, Kalra PA. Relationship of renal dysfunction to proximal arterial disease severity in atherosclerotic renovascular disease. Nephrol Dial Transplant 2000;15:631–6.

    Article  PubMed  CAS  Google Scholar 

  35. Meyrier A, Hill GS, Simon P. Ischemic renal diseases: new insights into old entities. Kidney Int 1998;54:2–13.

    Article  PubMed  CAS  Google Scholar 

  36. Setaro JF, Saddler MC, Chen CC, et al. Simplified captopril renography in diagnosis and treatment of renal artery stenosis. Hypertension 1991;18:289–98.

    PubMed  CAS  Google Scholar 

  37. Fommei E, Ghone S, Hilson AJ. Captopril radionuclide test in renovascular hypertension: a European multicentre study. Eur J Nucl Med 1991;90:30–40.

    Google Scholar 

  38. Hollifield JW, Sherman K, Zwagg RV, Shand DG. Proposed mechanisms of propranolol’s antihypertensive effect in essential hypertension. N Engl J Med 1976;295:68–73.

    Article  PubMed  CAS  Google Scholar 

  39. Lewis EJ, Hunsicker LG, Bain RP, Rhode RD. The effect of angiotensin-converting enzyme inhibition on diabetic nephropathy. N Engl J Med 1993;329:1456–62.

    Article  PubMed  CAS  Google Scholar 

  40. Maschio G, Alberti D, Janin G, et al. Effect of the angiotensinconverting- enzyme inhibitor benazepril on the progression of chronic renal insufficiency. The Angiotensin-converting Enzyme Inhibition in Progressive Renal Insufficiency Study Group. N Engl J Med 1996;334:939–45.

    Article  PubMed  CAS  Google Scholar 

  41. Brenner BM, Cooper ME, DeZeeuw D, et al. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med 2001;345:861–9.

    Article  PubMed  CAS  Google Scholar 

  42. Parving HH, Lehnert H, Brochner-Mortensen J, et al. for the Irbesartan in Patients with Type 2 Diabetes and Microalbuminuria Study Group. The effect of irbesartan on the development of diabetic nephropathy in patients with type 2 diabetes. N Engl J Med 2001;345:870–8.

    Article  PubMed  CAS  Google Scholar 

  43. Hilgers KF, Mann JFE. ACE inhibitors versus AT1 receptor antagonists in patients with chronic renal disease. J Am Soc Nephrol 2002;13:1100–8.

    PubMed  CAS  Google Scholar 

  44. Lorell BH. Role of angiotensin AT1 and AT2 receptors in cardiac hypertrophy and disease. Am J Cardiol 1999;83:H48–52.

    Article  Google Scholar 

  45. Geisterfer AAT, Peach MJ, Owens GK. Angiotensin II induces hypertrophy, not hyperplasia, of cultured rat aortic smooth muscle cells. Circ Res 1988;62:749–56.

    PubMed  CAS  Google Scholar 

  46. Schnee JM, Hsueh WA. Angiotensin II, adhesion, and cardiac fibrosis. Cardiovasc Res 2000;46:264–8.

    Article  PubMed  CAS  Google Scholar 

  47. Kajstura J, Cigola E, Malhotra A. Angiotensin II induces apoptosis of adult ventricular myocytes in vitro. J Mol Cell Cardiol 1997;29:859–70.

    Article  PubMed  CAS  Google Scholar 

  48. Aggarwal A, Brown KA, LeWinter MM. Diastolic dysfunction: pathophysiology, clinical features, and assessment with radionuclide methods. J Nucl Cardiol 2001;8:98–106.

    Article  PubMed  CAS  Google Scholar 

  49. Mandinov L, Eberli FR, Seiler C, Hess OM. Diastolic heart failure. Cardiovasc Res 2000;45:813–25.

    Article  PubMed  CAS  Google Scholar 

  50. Wachtell K, Smith G, Gerdts E, et al. Left ventricular filling patterns in patients with systemic hypertension and left ventricular hypertrophy (the LIFE Study). Am J Cardiol 2000;85:466- 72.

    Article  PubMed  CAS  Google Scholar 

  51. Setaro JF. The hypertensive heart: new observations and evolving therapeutic imperatives. J Clin Hypertens 2001;3:14–5.

    Article  CAS  Google Scholar 

  52. Kawano H, Do YS, Kawano Y, et al. Angiotensin II has multiple profibrotic effects in human cardiac fibroblasts. Circulation 2000; 101:1130–7.

    PubMed  CAS  Google Scholar 

  53. Rocchini AP, Moorehead C, DeRemer S, Goodfriend TL, Ball DL. Hyperinsulinemia and the aldosterone and pressor responses to angiotensin II. Hypertension 1990;15:861–6.

    PubMed  CAS  Google Scholar 

  54. Tuck M, Corry D, Trujillo A. Salt-sensitive blood pressure and exaggerated vascular reactivity in the hypertension of diabetes mellitus. Am J Med 1990;88:210–6.

    Article  PubMed  CAS  Google Scholar 

  55. Nakamura K, Fushimi K, Kouchi H, et al. Inhibitory effects of antioxidants on neonatal rat cardiac hypertrophy induced by tumor necrosis factor-alpha and angiotensin II. Circulation 1998; 98:794–9.

    PubMed  CAS  Google Scholar 

  56. Lang D, Mosfer SI, Shakesby A, Donaldson F, Lewis MJ. Coronary microvascular endothelial redox state in left ventricular hypertrophy. The role of angiotensin II. Circ Res 2000;86:463–9.

    PubMed  CAS  Google Scholar 

  57. Reiss K, Capasso JM, Huang HE, et al. ANG II receptors, c-myc, and c-jun in myocytes after myocardial infarction and ventricular failure. Am J Physiol 1993;264:H760–9.

    PubMed  CAS  Google Scholar 

  58. Meggs LG, Coupet J, Huang H, et al. Regulation of angiotensin II receptors on ventricular myocytes after myocardial infarction in rats. Circ Res 1993;72:1149–62.

    PubMed  CAS  Google Scholar 

  59. Asano K, Dutcher DL, Port JD, et al. Selective downregulation of the angiotensin II AT1-receptor subtype in failing human ventricular myocardium. Circulation 1997;95:1193–200.

    PubMed  CAS  Google Scholar 

  60. Haywood GA, Gullestad L, Katsuya T, et al. AT1 and AT2 angiotensin receptor gene expression in human heart failure. Circulation 1997;95:1201–6.

    PubMed  CAS  Google Scholar 

  61. White M, Racine N, Ducharme A, deChamplain J. therapeutic potential of angiotensin II receptor antagonists. Expert Opin Investig Drugs 2001;10:1687–701.

    Article  PubMed  CAS  Google Scholar 

  62. Saino A, Pomidossi G, Perondi R, et al. Modulation of sympathetic coronary vasoconstriction by cardiac renin-angiotensin system in human coronary heart disease. Circulation 2000;101:2277–833.

    PubMed  CAS  Google Scholar 

  63. Daugherty A, Manning MW, Cassis LA. Angiotensin II promotes atherosclerotic lesions and aneurysms in apolipoprotein E-defi- cient mice. J Clin Invest 2000;105:1605–12.

    Article  PubMed  CAS  Google Scholar 

  64. Kranzhofer R, Schmidt J, Pfeiffer CAH, et al. Angiotensin induces inflammatory activation of human vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 1000;19:1623–9.

    Google Scholar 

  65. Kranzhofer R, Browatzki M, Schmidt J, Kubler W. Angiotensin II activates the proinflammatory transcription factor nuclear factor-kappa B in human monocytes. Biochem Biophys Res Commun 1999;257:826–8.

    Article  PubMed  CAS  Google Scholar 

  66. Chen XL, Tummala PE, Olbrych MT, Alexander RW, Medford RM. Angiotensin II induces monocyte chemoattractant protein-1 gene in rate vascular smooth muscle cells. Circ Res 1998;83:952–99.

    PubMed  CAS  Google Scholar 

  67. Tummala PE, Chen XL, Sundell CL, et al. Angiotensin II induces vascular cell adhesion molecule-1 expression in rat vasculature. A potential link between the renin-angiotensin system and atherosclerosis. Circulation 1999;100:1223–9.

    PubMed  CAS  Google Scholar 

  68. Libby P. Current concepts of the pathogenesis of the acute coronary syndromes. Circulation 2001;104:365–72.

    PubMed  CAS  Google Scholar 

  69. Hernandez-Presa M, Bustos C, Ortego M, et al. Angiotensin converting enzyme inhibition prevents arterial nuclear factorkappa B activation, monocyte chemoattractant protein-1 expression, and macrophage infiltration in a rabbit model of early accelerated atherosclerosis. Circulation 1997;95:1532–41.

    PubMed  CAS  Google Scholar 

  70. Nakamura S, Nakamura I, Ma L, Vaughan DE, Fogo AB. Plasminogen activator inhibitor-1 expression is regulated by the angiotensin type 1 receptor in vivo. Kidney Int 2000;58:251–9.

    Article  PubMed  CAS  Google Scholar 

  71. Pfeffer MA, Greaves SC, Arnold JMO, et al. Early vs delayed angiotensin-converting enzyme inhibition therapy in acute myocardial infarction: the Healing and Early Afterload Reducing Therapy trial. Circulation 1997;95:2643–51.

    PubMed  CAS  Google Scholar 

  72. Goodfield NER, Newby DE, Ludlam CA, Flapan AD. Effects of acute angiotensin II type 1 receptor antagonism and angiotensin converting enzyme inhibition on plasma fibrinolytic parameters in patients with heart failure. Circulation 1999;99:2983–5.

    PubMed  CAS  Google Scholar 

  73. Yusuf S, Sleight P, Pogue J, et al. Effects of an angiotensinconverting enzyme inhibitor, ramipril, on cardiovascular events in high risk patients: the Heart Outcomes Prevention Evaluation Study Investigators. N Engl J Med 2000;342:145–53.

    Article  PubMed  CAS  Google Scholar 

  74. Vaughan DE. Fibrinolytic balance, the renin-angiotensin system, and atherosclerotic disease. Eur Heart J 1998;19(Suppl G):G9–12.

    PubMed  CAS  Google Scholar 

  75. Fabre JE, Rivard A, Magner M, Silver M, Isner JM. Tissue inhibition of angiotensin-converting enzyme activity stimulates angiogenesis in vivo. Circulation 1999;99:3043–9.

    PubMed  CAS  Google Scholar 

  76. Kjoller-Hansen L, Steffensen R, Grande P. The angiotensinconverting enzyme inhibition post revascularization study (APRES). J Am Coll Cardiol 2000;35:881–8.

    Article  PubMed  CAS  Google Scholar 

  77. Schiffrin EL, Deng LY. Relationship between small artery structure and systolic, diastolic, and pulse pressure in essential hypertension. J Hypertens 1999;17:381–7.

    Article  PubMed  CAS  Google Scholar 

  78. Andrews CO, Crim JW, Hartle DK. Angiotensin II binding in area postrema and nucleus tractus solitarius of SHR and WKY rats. Brain Res Bull 1993;32:419–24.

    Article  PubMed  CAS  Google Scholar 

  79. Wong PC, Bernard R, Timmermans PB. Effect of blocking angiotensin II receptor subtype on rat sympathetic nerve function. Hypertension 1992;19(6Pt 2):663–7.

    PubMed  CAS  Google Scholar 

  80. Moreau P, D’Uscio LV, Shaw S, et al. Angiotensin II increases tissue endothelin and induces vascular hypertrophy. Reversal by ETA-receptor antagonist. Circulation 1997;96:1593–7.

    PubMed  CAS  Google Scholar 

  81. O’Keefe JH, Wetzel M, Moe RR, Brosnahan K, Lavie CJ. Should an angiotensin-converting enzyme inhibitor be standard therapy for patients with atherosclerotic disease? J Am Coll Cardiol 2001;37:1–8.

    Article  PubMed  CAS  Google Scholar 

  82. Moser M, Setaro JF. Antihypertensive drug therapy and regression of left ventricular hypertrophy: a review with a focus on diuretics. Eur Heart J 1991;12:1034–9.

    PubMed  CAS  Google Scholar 

  83. Masaki H, Kurihara T, Yamaki A, et al. Cardiac-specific overexpression of angiotensin II AT2 receptor causes attenuated response to AT1 receptor-mediated pressor and chronotropic effects. J Clin Invest 1998;101:527–35.

    Article  PubMed  CAS  Google Scholar 

  84. Schmeider RE, Martus P, Klingbeil A. Reversal of left ventricular hypertrophy in essential hypertension: a meta-analysis of randomized double-blind studies. JAMA 1996;275:1507–13.

    Article  Google Scholar 

  85. Malmqvist K, Kahan T, Edner M, et al. Regression of left ventricular hypertrophy in human hypertension with irbesartan. J Hypertens 2001;19:1167–76.

    Article  PubMed  CAS  Google Scholar 

  86. Dahlof B, Devereux RB, Kjeldsen S, et al. Cardiovascular morbidity and mortality in the Losartan Intervention For Endpoint reduction in hypertension study (LIFE): a randomized trial against atenolol. Lancet 2002;359:995–1003.

    Article  PubMed  CAS  Google Scholar 

  87. Kohya T, Yokoshiki H, Tohse N, et al. Regression of left ventricular hypertrophy prevents ischemia-induced lethal arrhythmias. Beneficial effect of angiotensin II blockade. Circ Res 1995;76:892–9.

    PubMed  CAS  Google Scholar 

  88. Kagoshima T, Masuda J, Sutani T. Angiotensin II receptor antagonist, TCV-116, prevents myocardial hypertrophy in spontaneously hypertensive rats. Blood Press 1994;5:89–93.

    CAS  Google Scholar 

  89. Bruckschlegel G, Holmer SR, Jandeleit K, et al. Blockade of the renin-angiotensin system in cardiac pressure-overload hypertrophy in rats. Hypertension 1995;25:250–9.

    PubMed  CAS  Google Scholar 

  90. Verdecchia P, Schillaci G, Borgioni C, et al. Prognostic signifi- cance of serial changes in left ventricular mass in essential hypertension. Circulation 1998;97:48–54.

    PubMed  CAS  Google Scholar 

  91. Warner JG, Metzger DC, Kitzman DW, et al. Losartan improves exercise tolerance in patients with diastolic dysfunction and a hypertensive response to exercise. J Am Coll Cardiol 1999;33:1567–722.

    Article  PubMed  CAS  Google Scholar 

  92. Soufer R, Wohlgelernter D, Vita NA, et al. Intact systolic left ventricular function in clinical congestive heart failure. Am J Cardiol 1985;55:1032–6.

    Article  PubMed  CAS  Google Scholar 

  93. Setaro JF, Zaret BL, Schulman DS, Black HR, Soufer R. Usefulness of verapamil for congestive heart failure associated with abnormal left ventricular diastolic filling and normal left ventricular systolic performance. Am J Cardiol 1990;66:981–6.

    Article  PubMed  CAS  Google Scholar 

  94. Perry GJ, Wei C, Hakes GH, et al. Angiotensin II receptor blockade does not improve left ventricular function and remodeling in subacute mitral regurgitation the dog. J Am Coll Cardiol 2002;39:1374–9.

    Article  PubMed  CAS  Google Scholar 

  95. Gaasch WH, Aurigemma GP. Inhibition of the renin-angiotensin system and the left ventricular adaptation to mitral regurgitation. J Am Coll Cardiol 2002;39:1380–3.

    Article  PubMed  CAS  Google Scholar 

  96. Pitt B, Zannad F, Remme WJ, et al. for The Randomized Aldactone Evaluation Study Investigators. The effects of spironolactone on morbidity and mortality in patients with severe heart failure. N Engl J Med 1999;341:709–17.

    Article  PubMed  CAS  Google Scholar 

  97. Pfeffer MA, Braunwald E, Moye LA, & SAVE Investigators. Effect of captopril on mortality and morbidity in patients with left ventricular dysfunction after myocardial infarction: results of the Survival And Ventricular Enlargement Trials. N Engl J Med 1992;327:669–77.

    PubMed  CAS  Google Scholar 

  98. Garg R, Yusuf S, & Collaborative Group of ACE Inhibitor Trials. Overview of randomized trials of angiotensin-converting enzyme inhibitors on mortality and morbidity in patients with heart failure. JAMA 1995;273:1450–6.

    Article  PubMed  CAS  Google Scholar 

  99. The SOLVD Investigators. Effects of enalapril on mortality and the development of heart failure in asymptomatic patients with reduced left ventricular ejection fractions. N Engl J Med 1992; 327:685–91.

    Google Scholar 

  100. Chaput AJ. Persistency with angiotensin receptor blockers (ARB) versus other antihypertensives (AHT) using the Saskatchewan database [abstract]. Can J Cardiol 2000;16(Suppl F):194F.

    Google Scholar 

  101. Tsutamoto T, Wada A, Maeda K, et al. Angiotensin II type 1 receptor antagonist decreases plasma levels of tumor necrosis factor alpha, interleukin-6, and soluble adhesion molecules in patients with chronic heart failure. J Am Coll Cardiol 2000;35:714–211.

    Article  PubMed  CAS  Google Scholar 

  102. Crozier I, Ikram H, Awan N, et al. Losartan in heart failure. Hemodynamic effects and tolerability. Circulation 1995;91:691–77.

    PubMed  CAS  Google Scholar 

  103. Pitt B, Segal R, Martinez FA, et al. Randomised trial of losartan versus captopril in patients over 65 with heart failure (Evaluation of Losartan in the Elderly Study, ELITE). Lancet 1997;349:747–52.

    Article  PubMed  CAS  Google Scholar 

  104. Pitt B, Poole-Wilson PA, Segal R, et al. Effect of losartan compared with captopril on mortality in patients with symptomatic heart failure. Randomised trial-the Losartan Heart Failure Survival Study ELITE II. Lancet 2000;355:1582–7.

    Article  PubMed  CAS  Google Scholar 

  105. Cohn JN, Tognoni G, & Valsartan Heart Failure Trial Investigators. A randomized trial of the angiotensin-receptor blocker valsartan in chronic heart failure (Val-HeFT). N Engl J Med 2001;345:1667–75.

    Article  PubMed  CAS  Google Scholar 

  106. Swedberg K, Pfeffer M, Granger C, & CHARM Program Investigators. Candesartan in heart failure-assessment of reduction in mortality and morbidity (CHARM): rationale and design. J Card Fail 1999;5:276–82.

    Article  PubMed  CAS  Google Scholar 

  107. Higashi Y, Sasaki S, Nakagawa K, et al. A comparison of angiotensin converting enzyme inhibitors, calcium antagonists, beta-blockers, and diuretic agents on reactive hyperemia in patients with essential hypertension: a multicenter study. J Am Coll Cardiol 2000;35:284–91.

    Article  PubMed  CAS  Google Scholar 

  108. Prasad A, Tupas-Habib T, Schenke WH, et al. Acute and chronic angiotensin-1 receptor antagonism reverses endothelial dysfunction in atherosclerosis. Circulation 2000;101:2349–54.

    PubMed  CAS  Google Scholar 

  109. Schiffrin EL, Deng LY, Larochelle P. Progressive improvement in the structure of resistance arteries of hypertensive patients after 2 years of treatment with an angiotensin-1 converting enzyme inhibitor. Comparison with effects of a β-blocker. Am J Hypertens 1995;8:229–36.

    Article  PubMed  CAS  Google Scholar 

  110. Schiffrin EL, Park JB, Intengan HD, Touyz RM. Correction of arterial structure and endothelial function in human essential hypertension by the angiotensin receptor antagonist losartan. Circulation 2000;101:1653–9.

    PubMed  CAS  Google Scholar 

  111. Laflamme AK, Oster L, Cardinal R, de Champlain J. Effects of renin-angiotensin blockade on sympathetic reactivity and betaadrenergic pathway in the spontaneously hypertensive rat. Hypertension 1997;30(2 Pt 1):278–87.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John F. Setaro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perazella, M.A., Setaro, J.F. Renin-angiotensin-aldosterone system: Fundamental aspects and clinical implications in renal and cardiovascular disorders. J Nucl Cardiol 10, 184–196 (2003). https://doi.org/10.1067/mnc.2003.392

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1067/mnc.2003.392

Keywords

Navigation