Skip to main content

Advertisement

Log in

Lake tahoe invitation meeting 2002

  • Published:
Journal of Nuclear Cardiology Aims and scope

An Erratum to this article was published on 01 May 2003

Summary

Molecular imaging is a challenge to the biologist, the chemist, and the imaging scientist. Perhaps for the first time in our field, we are less focused on developing imaging techniques that we can apply clinically today and more focused on using imaging to unlock the mysteries of how cardiac disease starts and progresses and how to reverse the disease process, even if just in the animal model. The demand being placed on our instrumentation is to image smaller and smaller radioactive distributions that have less and less uptake. The demand is to image it statically and dynamically with a high enough accuracy so that we can quantitate meaningful parameters. This challenge requires that we systematically study our present limitations and weaknesses and that we exploit every opportunity we have. These opportunities are found using microPET and microSPECT and in the latest advances in SPECT and PET instrumentation. The challenge can only be met by a multidisciplinary approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Nabel EG, Plautz G, Boyce FM, Stanley JC, Nabel GJ. Recombinant gene expression in vivo within endothelial cells of the arterial wall. Science 1989;244:1342–4.

    Article  PubMed  CAS  Google Scholar 

  2. Wilson JM, Birinyi LK, Salomon RN, et al. Implantation of vascular grafts lined with genetically modified endothelial cells. Science 1989;244:1344–6.

    Article  PubMed  CAS  Google Scholar 

  3. Dichek DA, Neville RF, Zwiebel JA, et al. Seeding of intravascular stents with genetically engineered endothelial cells. Circulation 1989;80:1347–53.

    PubMed  CAS  Google Scholar 

  4. Grossman M, Raper SE, Kozarsky K, et al. Successful ex vivo gene therapy directed to liver in a patient with familial hypercholesterolaemia. Nat Genet 1994;6:335–41.

    Article  PubMed  CAS  Google Scholar 

  5. Vale PR, Losordo DW, Milliken CE, et al. Randomized, singleblind, placebo-controlled pilot study of catheter-based myocardial gene transfer for therapeutic angiogenesis using left ventricular electromechanical mapping in patients with chronic myocardial ischemia. Circulation 2001;103:2138–43.

    PubMed  CAS  Google Scholar 

  6. Grines CL, Watkins MW, Helmer G, et al. Angiogenic Gene Therapy (AGENT) trial in patients with stable angina pectoris. Circulation 2002;105:1291–7.

    Article  PubMed  CAS  Google Scholar 

  7. Dichek DA. Interventional approaches to the introduction of genetic material into the cardiovascular system. In: Topol EJ, editor. Textbook of interventional cardiology. 4th ed. Philadelphia: Saunders; 2002. p. 801–26.

    Google Scholar 

  8. Kullo IJ, Simari RD, Schwartz RS. Vascular gene transfer: from bench to bedside. Arterioscler Thromb Vasc Biol 1999;19:196- 207.

    PubMed  CAS  Google Scholar 

  9. Kawashiri MM, Rader DJ. Gene therapy for lipid disorders. Curr Control Trials Cardiovasc Med 2000;1:120–7.

    Article  CAS  Google Scholar 

  10. Isner JM. Myocardial gene transfer. Nature 2002;415:234–9.

    Article  PubMed  CAS  Google Scholar 

  11. Hajjar RJ, del Monte F, Matsui T, Rosenzweig A. Prospects for gene therapy for heart failure. Circ Res 2000;86:616–21.

    PubMed  CAS  Google Scholar 

  12. Grossman M, Rader DJ, Muller DWM, et al. A pilot study of ex vivo gene therapy for homozygous familial hypercholesterolemia. Nat Med 1995;1:1148–54.

    Article  PubMed  CAS  Google Scholar 

  13. Simons M, Bonow RO, Chronos NA, et al. Clinical trials in coronary angiogenesis: issues, problems, consensus. Circulation 2000;102:e72–96.

    Google Scholar 

  14. Kass-Eisler A, Falck-Pedersen E, Elfenbein DH, et al. The impact of developmental stage, route of administration and the immune system on adenovirus-mediated gene transfer. Gene Ther 1999;1:395–4022.

    Google Scholar 

  15. Roessler BJ, Allen ED, Wilson JM, Hartman JW, Davidson BL. Adenoviral-mediated gene transfer to rabbit synovium in vivo. J Clin Invest 1993;92:1085–92.

    Article  PubMed  CAS  Google Scholar 

  16. Detrait ER, Bowers WJ, Halterman MW, et al. Reporter gene transfer induces apoptosis in primary cortical neurons. Mol Ther 2002;5:723–30.

    Article  PubMed  CAS  Google Scholar 

  17. Huang WY, Aramburu J, Douglas PS, Izumo S. Transgenic expression of green fluorescence protein can cause dilated cardiomyopathy. Nat Med 2000;6:482–3.

    Article  PubMed  CAS  Google Scholar 

  18. Wen S, Schneider DB, Driscoll RM, et al. Second-generation adenoviral vectors do not prevent rapid loss of transgene expression and vector DNA from the arterial wall. Arterioscler Thromb Vasc Biol 2000;20:1452–8.

    PubMed  CAS  Google Scholar 

  19. Jooss K, Yang Y, Fisher KJ, Wilson JM. Transduction of dendritic cells by DNA viral vectors directs the immune response to transgene products in muscle fibers. J Virol 1998;72:4212–23.

    PubMed  CAS  Google Scholar 

  20. Ray P, Bauer E, Iyer M, et al. Monitoring gene therapy with reporter gene imaging. Semin Nucl Med 2001;31:312–20.

    Article  PubMed  CAS  Google Scholar 

  21. Bengel FM, Anton M, Avril N, et al. Uptake of radiolabeled 2’-fluoro-2’-deoxy-5-iodo-1-β-D-arabinofuranosyluracil in cardiac cells after adenoviral transfer of the herpesviral thymidine kinase gene-the cellular basis for cardiac gene imaging. Circulation 2000;102:948–50.

    PubMed  CAS  Google Scholar 

  22. Wu J, Inubushi M, Sundaresan G, Schelbert H, Gambhir SS. Optical imaging of cardiac reporter gene expression in living rats. Circulation 2002;105:1631–4.

    Article  PubMed  Google Scholar 

  23. Inubushi M, Wu J, Gambhir SS, et al. Positron-emission tomography reporter gene expression imaging in rat myocardium. Circulation 2003;107:326–32.

    Article  PubMed  CAS  Google Scholar 

  24. Wu J, Inubushi M, Sundaresan G, Schelbert HR, Gambhir SS. Positron emission tomography imaging of cardiac reporter gene expression in living rats. Circulation 2002;106:180–3.

    Article  PubMed  Google Scholar 

  25. Iyer M, Wu L, Carey M, et al. Two-step transcriptional amplifi- cation as a method for imaging reporter gene expression using weak promoters. Proc Natl Acad Sci U S A 2001;98:14595–600.

    Article  PubMed  CAS  Google Scholar 

  26. Zhang L, Adams J, Billick E, et al. Molecular engineering of a two-step transcription amplification (TSTA) system for transgene delivery in prostate cancer. Mol Ther 2002;5:223–32.

    Article  PubMed  CAS  Google Scholar 

  27. Qiao J, Doubrovin M, Sauter BV, et al. Tumor-specific transcriptional targeting of suicide gene therapy. Gene Ther 2002;9:168–75.

    Article  PubMed  CAS  Google Scholar 

  28. Doubrovin M, Ponomarev V, Beresten T, et al. Imaging transcriptional regulation of p53-dependent genes with positron emission tomography in vivo. Proc Natl Acad Sci U S A 2001;98:9300–5.

    Article  PubMed  CAS  Google Scholar 

  29. Ray P, Pimenta H, Paulmurugan R, et al. Noninvasive quantitative imaging of protein-protein interactions in living subjects. Proc Natl Acad Sci U S A 2002;99:3105–10.

    Article  PubMed  CAS  Google Scholar 

  30. Luker GD, Sharma V, Pica CM, et al. Noninvasive imaging of protein-protein interactions in living animals. Proc Natl Acad Sci U S A 2002;99:6961–6.

    Article  PubMed  CAS  Google Scholar 

References

  1. Simons M, Horowitz A. Syndecan-4-mediated signalling. Cell Signal 2001;13:855–62.

    Article  PubMed  CAS  Google Scholar 

  2. Horowitz A, Tkachenko E, Simons M. Fibroblast growth factorspecific modulation of cellular response by syndecan-4. J Cell Biol 2002;157:715–25.

    Article  PubMed  CAS  Google Scholar 

  3. Li J, Brown L, Laham R, Volk R, Simons M. Macrophagedependent regulation of syndecan gene expression. Circ Res 1997;81:785–96.

    PubMed  CAS  Google Scholar 

  4. Bhagwat S, Lahdenranta J, Giordano R, et al. CD13/APN is activated by angiogenic signals and is essential for capillary tube formation. Blood 2001;97:652–9.

    Article  PubMed  CAS  Google Scholar 

  5. Pasqualini R, Koivunen E, Kain R, et al. Aminopeptidase N is a receptor for tumor-homing peptides and a target for inhibiting angiogenesis. Cancer Res 2000;60:722–7.

    PubMed  CAS  Google Scholar 

  6. Mostaza J, Gomez M, Gallardo F, et al. Cholesterol reduction improves myocardial perfusion abnormalities in patients with coronary artery disease and average cholesterol levels. J Am Coll Cardiol 2000;35:76–82.

    Article  PubMed  CAS  Google Scholar 

  7. Belardinelli R, Georgiou D, Cianci G, Purcaro A. Randomized, controlled trial of long-term moderate exercise training in chronic heart failure circulation. Circulation 1999;99:1173–82.

    PubMed  CAS  Google Scholar 

  8. Gould K, Martucci J, Goldberg D, et al. Short-term cholesterol lowering decreases size and severity of perfusion abnormalities by positron emission tomography after dipyridamole in patients with coronary artery disease: a potential noninvasive marker of healing coronary endothelium. Circulation 1994;89:1530–8.

    PubMed  CAS  Google Scholar 

  9. Losordo D, Vale P, Symes J, et al. Gene therapy for myocardial angiogenesis: initial clinical results with direct myocardial injection of phVEGF165 as sole therapy for myocardial ischemia. Circulation 1998;98:2800–2804.

    PubMed  CAS  Google Scholar 

  10. Rosengart T, Lee L, Patel S, et al. Angiogenesis gene therapy: phase I assessment of direct intramyocardial administration of an adenovirus vector expressing VEGF121 cDNA to individuals with clinically significant severe coronary artery disease. Circulation 1999;100:468–74.

    PubMed  CAS  Google Scholar 

  11. Hendel R, Henry T, Rocha-Singh K, et al. Effect of intracoronary recombinant human vascular endothelial growth factor on myocardial perfusion: evidence for a dose-dependent effect. Circulation 2000;101:118–21.

    PubMed  CAS  Google Scholar 

  12. Laham R, Sellke F, Edelman E, et al. Local perivascular delivery of basic fibroblast growth factor in patients undergoing coronary bypass surgery: results of a phase I randomized, double-blind, placebo-controlled trial. Circulation 1999;100:1865–71.

    PubMed  CAS  Google Scholar 

  13. Vale P, Losordo D, Milliken C, et al. Left ventricular electromechanical mapping to assess efficacy of phVEGF(165) gene transfer for therapeutic angiogenesis in chronic myocardial ischemia. Circulation 2000;102:965–74.

    PubMed  CAS  Google Scholar 

  14. Udelson J, Dilsizian V, Laham R, et al. Therapeutic angiogenesis with recombinant fibroblast growth factor-2 improves stress and rest myocardial perfusion abnormalities in patients with severe symptomatic chronic coronary artery disease. Circulation 2000; 102:1605–10.

    PubMed  CAS  Google Scholar 

  15. Simons M, Annex B, Laham R, et al. Pharmacological treatment of coronary artery disease with recombinant fibroblast growth factor- 2: double-blind, randomized, controlled clinical trial. Circulation 2002;105:788–93.

    Article  PubMed  CAS  Google Scholar 

  16. Losordo D, Vale P, Hendel R, et al. Phase 1/2 placebocontrolled, double-blind, dose-escalating trial of myocardial vascular endothelial growth factor 2 gene transfer by catheter delivery in patients with chronic myocardial ischemia. Circulation 2002;105:2012–8.

    Article  PubMed  CAS  Google Scholar 

  17. Becker L. Conditions for vasodilator-induced coronary steal in experimental myocardial ischemia. Circulation 1978;57:1103–10.

    PubMed  CAS  Google Scholar 

  18. Fung A, Gallagher K, Buda A. The physiologic basis of dobutamine as compared with dipyridamole stress interventions in the assessment of critical coronary stenosis. Circulation 1987;76:943–55.

    PubMed  CAS  Google Scholar 

  19. Mahmarian J, Moye L, Verani M, Bloom M, Pratt C. High reproducibility of myocardial perfusion defects in patients undergoing serial exercise thallium-201 tomography. Am J Cardiol 1995;75:1116–9.

    Article  PubMed  CAS  Google Scholar 

  20. MacDonald L, MacDonald L, Elliott M, et al. Variability of myocardial perfusion SPECT: contribution or repetitive processing, acquisition, and testing. J Nucl Cardiol 1999;40:126P.

    Google Scholar 

  21. Burkhoff D, Jones J, Becker L. Variability of myocardial perfusion defects assessed by thallium-201 scintigraphy in patients with coronary artery disease not amenable to angioplasty or bypass surgery. J Am Coll Cardiol 2001;38:1033–9.

    Article  PubMed  CAS  Google Scholar 

  22. Berman D, Kang X, Van Train K, et al. Comparative prognostic value of automatic quantitative analysis versus semiquantitative visual analysis of exercise myocardial perfusion single-photon emission computed tomography. J Am Coll Cardiol 1998;32:1987- 95.

    Article  PubMed  CAS  Google Scholar 

  23. Califf R, DeMets D. Principles from clinical trials relevant to clinical practice: part I. Circulation 2002;106:1015–21.

    Article  PubMed  Google Scholar 

  24. Pearlman J, Laham R, Simons M. Coronary angiogenesis: detection in vivo with MR imaging sensitive to collateral neocirculation- preliminary study in pigs. Radiology 2000;214:801–7.

    PubMed  CAS  Google Scholar 

  25. Laham R, Chronos N, Pike M, et al. Intracoronary basic fibroblast growth factor (FGF-2) in patients with severe ischemic heart disease: results of a phase I open-label dose escalation study. J Am Coll Cardiol 2000;36:2132–9.

    Article  PubMed  CAS  Google Scholar 

  26. Sinusas A. The potential for myocardial imaging with hypoxia markers. Semin Nucl Med 1999;29:330–8.

    Article  PubMed  CAS  Google Scholar 

  27. Meoli D, Bourke B, Hu L, Brown L, Sinusas A . Regional hypoxia correlates with radiolabeled targeted markers of myocardial angiogenesis in ischemic rat model. J Nucl Med 2002.

  28. Ferrara N, Davis-Smyth T. The biology of vascular endothelial growth factor. Endocr Rev 1997;18:4–25.

    Article  PubMed  CAS  Google Scholar 

  29. Shweiki D, Itin A, Soffer D, Keshet E. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 1992;359:843–5.

    Article  PubMed  CAS  Google Scholar 

  30. Li J, Brown L, Hibberd M, et al. VEGF, flk-1, and flt-1 expression in a rat myocardial infarction model of angiogenesis. Am J Physiol 1996;270:H1803–11.

    PubMed  CAS  Google Scholar 

  31. Tuder R, Flook B, Voelkel N. Increased gene expression for VEGF and the VEGF receptors KDR/Flk and Flt in lungs exposed to acute or to chronic hypoxia. Modulation of gene expression by nitric oxide. J Clin Invest 1995;95:1798–807.

    Article  PubMed  CAS  Google Scholar 

  32. Brogi E, Schatteman G, Wu T, et al. Hypoxia-induced paracrine regulation of vascular endothelial growth factor receptor expression. J Clin Invest 1996;97:469–76.

    Article  PubMed  CAS  Google Scholar 

  33. Villanueva F, Lu E, Csikari M, et al. Targeted in vivo scintigraphic imaging of receptors for vascular endothelial growth factor identifies ischemic tissue. Circulation 2000;102:404.

    Google Scholar 

  34. Villanueva F, Abraham J, Schreiner G, et al. Myocardial contrast echocardiography can be used to assess the microvascular response to vascular endothelial growth factor-121. Circulation 2002;105:759–655.

    Article  PubMed  CAS  Google Scholar 

  35. Goldman S. Receptor imaging: competitive or complementary to antibody imaging. Semin Nucl Med 1997;27:85–93.

    Article  Google Scholar 

  36. Brooks P, Clark R, Cheresh D. Requirement of vascular integrin alpha v beta 3 for angiogenesis. Science 1994;264:569–71.

    Article  PubMed  CAS  Google Scholar 

  37. Brooks P, Montgomery A, Rosenfeld M, et al. Integrin alpha v beta 3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell 1994;79:1157–64.

    Article  PubMed  CAS  Google Scholar 

  38. Schwartz M, Schaller M, Ginsberg M. Integrins: emerging paradigms of signal transduction. I. Annu Rev Cell Dev Biol 1995;11:549–999.

    Article  PubMed  CAS  Google Scholar 

  39. Clyman R, Mauray F, Kramer R. Beta 1 and beta 3 integrins have different roles in the adhesion and migration of vascular smooth muscle cells on extracellular matrix. Exp Cell Res 1992;200:272- 84.

    Article  PubMed  CAS  Google Scholar 

  40. Frangogiannis N, Mendoza L, Lewallen M, et al. Induction and suppression of interferon-inducible protein 10 in reperfused myocardial infarcts may regulate angiogenesis. FASEB J 2001;15:1428–300.

    PubMed  CAS  Google Scholar 

  41. Sipkins D, Cheresh D, Kazemi M, et al. Detection of tumor angiogenesis in vivo by alphaVbeta3-targeted magnetic resonance imaging. Nat Med 1998;4:623–6.

    Article  PubMed  CAS  Google Scholar 

  42. Haubner R, Wester H, Reuning U, et al. Radiolabeled alpha(v)- beta3 integrin antagonists: a new class of tracers for tumor targeting. J Nucl Med 1999;40:1061–71.

    PubMed  CAS  Google Scholar 

  43. Haubner R, Wester H, Weber W, et al. Noninvasive imaging of alpha(v)beta3 integrin expression using 18F-labeled RGD-containing glycopeptide and positron emission tomography. Cancer Res 2001;61:1781–5.

    PubMed  CAS  Google Scholar 

  44. Haubner R, Wester H, Burkhart F, et al. Glycosylated RGDcontaining peptides: tracer for tumor targeting and angiogenesis imaging with improved biokinetics. J Nucl Med 2001;42:326- 36.

    PubMed  CAS  Google Scholar 

  45. Meoli D, Sadeghi M, Giordano F, et al. Pilot study of targeted imaging of angiogenesis. J Nucl Cardiol 2001;4:S133.

    Google Scholar 

  46. Meoli D, Sadeghi M, Krassilnikova S, et al. Non-invasive imaging of myocardial angiogenesis post myocardial infarction. In: Molecular, integrative, and clinical approaches to myocardial ischemia. Seattle. 2001.

  47. Meoli D, Sadeghi M, Bourke B, et al. Targeted imaging of myocardial angiogenesis in chronic model of infarction. Circulation 2002;106:II-331.

    Google Scholar 

References

  1. Weissleder R, Mahmood U. Molecular imaging. Radiology 2001; 219:316–33.

    PubMed  CAS  Google Scholar 

  2. Weissleder R. A clearer vision for in vivo imaging. Nat Biotechnol 2001;19:316–7.

    Article  PubMed  CAS  Google Scholar 

  3. Koopman G, Reutelingsperger CP, Kuijten GA, et al. Annexin V for flow cytometric detection of phosphatidylserine expression on B cells undergoing apoptosis. Blood 1994;84:1415–20.

    PubMed  CAS  Google Scholar 

  4. van den Eijnde SM, Luijsterburg AJ, Boshart L, et al. In situ detection of apoptosis during embryogenesis with annexin-V: from whole mount to ultrastructure. Cytometry 1997;29:313–20.

    Article  PubMed  Google Scholar 

  5. Blankenberg FG, Katsikis PD, Tait JF, et al. In vivo detection and imaging of phosphatidylserine expression during programmed cell death. Proc Natl Acad Sci USA 1998;95:6349–54.

    Article  PubMed  CAS  Google Scholar 

  6. Narula J, Acio ER, Narula N, et al. Annexin-V imaging for noninvasive detection of cardiac allograft rejection. Nat Med 2001;7:1347–52.

    Article  PubMed  CAS  Google Scholar 

  7. Hofstra L, Liem IH, Dumont EA, et al. Visualisation of cell death in vivo in patients with acute myocardial infarction. Lancet 2000;56:209–12.

    Article  Google Scholar 

  8. Hofstra L, Dumont EA, Thimister PW, et al. In vivo detection of apoptosis in an intracardiac tumor. JAMA 2001;285:1841–2.

    Article  PubMed  CAS  Google Scholar 

  9. Dumont EA, Reutelingsperger CP, Smits JF, et al. Real-time imaging of apoptotic cell-membrane changes at the single-cell level in the beating murine heart. Nat Med 2001;7:1352–5.

    Article  PubMed  CAS  Google Scholar 

  10. Carrió I. Cardiac neurotransmission imaging. J Nucl Med 2001; 42:1062–76.

    PubMed  Google Scholar 

  11. Bristow MR. Mechanism of action of beta-blocking agents in heart failure. Am J Cardiol 1997;80:26L-40L.

    Article  PubMed  CAS  Google Scholar 

  12. Colucci WS. The sympathetic nervous system in heart failure. In: Hosenpud JD, Greenberg BH, editors. Congestive heart failure: pathophysiology, diagnosis, and comprehensive approach to management. 2nd ed. Philadelphia: Lippincott Williams & Wilkins; 2000. p. 189–97.

    Google Scholar 

  13. Münch G, Nguyen NT, Nekolla S, et al. Evaluation of sympathetic nerve terminals with epinephrine and hydroxyephedrine and positron emission tomography. Circulation 2000;101:516–23 [(11)C] [(11)C].

    PubMed  Google Scholar 

  14. Ungerer M, Hartmann F, Karoglan M, et al. Regional in vivo and in vitro characterization of autonomic innervation in cardiomyopathic human heart. Circulation 1998;97:174–80.

    PubMed  CAS  Google Scholar 

  15. Knickmeier M, Matheja P, Wichter T, et al. Clinical evaluation of no-carrier-added meta-(123I)iodobenzylguanidine for myocardial scintigraphy. Eur J Nucl Med 2000;27:302–7.

    Article  PubMed  CAS  Google Scholar 

  16. Schafers M, Schober O, Lerch H. Cardiac sympathetic neurotransmission scintigraphy. Eur J Nucl Med 1998;25:435–41.

    Article  PubMed  CAS  Google Scholar 

  17. Visser TJ, van Waarde A, van der Mark TW, et al. Characterization of pulmonary and myocardial beta-adrenoceptors with S-1’-(fluorine- 18)fluorocarazolol. J Nucl Med 1997;38:169–74.

    PubMed  CAS  Google Scholar 

  18. Le Guludec D, Cohen-Solal A, Delforge J, et al. Increased myocardial muscarinic receptor density in idiopathic dilated cardiomyopathy: an in vivo PET study. Circulation 1997;96:3416–222.

    Google Scholar 

  19. Goldstein DS, Holmes C, Cannon RO III, Eisenhofer G, Kopin IJ. Sympathetic cardioneuropathy in dysautonomias. N Engl J Med 1997;336:696–702.

    Article  PubMed  CAS  Google Scholar 

  20. Di Carli MF, Tobes MC, Mangner T, et al. Effects of cardiac sympathetic innervation on coronary blood flow. N Engl J Med 1997;336:1208–15.

    Article  PubMed  Google Scholar 

  21. Estorch M, Camprecios M, Flotats A, et al. Sympathetic reinnervation of cardiac allografts evaluated by 123I-MIBG imaging. J Nucl Med 1999;40:911–6.

    PubMed  CAS  Google Scholar 

  22. Wichter T, Schafers M, Rhodes CG, et al. Abnormalities of cardiac sympathetic innervation in arrhythmogenic right ventricular cardiomyopathy: quantitative assessment of presynaptic norepinephrine reuptake and postsynaptic beta-adrenergic receptor density with positron emission tomography. Circulation 2000;101:1552–8.

    PubMed  CAS  Google Scholar 

  23. Merlet P, Benvenuti C, Moyse D, et al. Prognostic value of MIBG imaging in idiopathic dilated cardiomyopathy. J Nucl Med 1999; 40:917–23.

    PubMed  CAS  Google Scholar 

  24. Maunoury C, Agostini D, Acar P, et al. Impairment of cardiac neuronal function in childhood dilated cardiomyopathy: an 123IMIBG scintigraphic study. J Nucl Med 2000;41:400–4.

    PubMed  CAS  Google Scholar 

  25. Cohen-Solal A, Esanu Y, Logeart D, et al. Cardiac metaiodobenzylguanidine uptake in patients with moderate chronic heart failure: relationship with peak oxygen uptake and prognosis. J Am Coll Cardiol 1999;33:759–66.

    Article  PubMed  CAS  Google Scholar 

  26. Suwa M, Otake Y, Moriguchi A, et al. Iodine-123 metaiodobenzylguanidine myocardial scintigraphy for prediction of response to beta-blocker therapy in patients with dilated cardiomyopathy. Am Heart J 1997;133:353–8.

    Article  PubMed  CAS  Google Scholar 

  27. Hartikainen J, Mustonen J, Kuikka J, Vanninen E, Kettunen R. Cardiac sympathetic denervation in patients with coronary artery disease without previous myocardial infarction. Am J Cardiol 1997;80:273–7.

    Article  PubMed  CAS  Google Scholar 

  28. Matsunari I, Schricke U, Bengel FM, et al. Extent of cardiac sympathetic neuronal damage is determined by the area of ischemia in patients with acute coronary syndromes. Circulation 2000;101:2579–85.

    PubMed  CAS  Google Scholar 

  29. Estorch M, Flotats A, Serra-Grima R, et al. Influence of exercise rehabilitation on myocardial perfusion and sympathetic heart innervation in ischaemic heart disease. Eur J Nucl Med 2000;27:333–99.

    Article  PubMed  CAS  Google Scholar 

  30. Schafers M, Dutka D, Rhodes CG, et al. Myocardial presynaptic and postsynaptic autonomic dysfunction in hypertrophic cardiomyopathy. Circ Res 1998;82:56–62.

    Google Scholar 

  31. Li ST, Tack CJ, Fananapazir L, Goldstein DS. Myocardial perfusion and sympathetic innervation in patients with hypertrophic cardiomyopathy. J Am Coll Cardiol 2000;35:1867–73.

    Article  PubMed  CAS  Google Scholar 

  32. Vaidyanathan G, Zhao XG, Strickland DK, Zalutsky MR. Nocarrier- added iodine-131-FIBG: evaluation of an MIBG analog. J Nucl Med 1997;38:330–4.

    PubMed  CAS  Google Scholar 

  33. Riou LM, Ruiz M, Sullivan GW, et al. Assessment of myocardial inflammation produced by experimental coronary occlusion and reperfusion with 99mTc-RP517, a new leukotriene B4 receptor antagonist that preferentially labels neutrophils in vivo. Circulation 2002;106:592–8.

    Article  PubMed  CAS  Google Scholar 

  34. Dreyer WJ, Michael LH, West MS, et al. Neutrophil accumulation in ischemic canine myocardium. Insights into time course, distribution, and mechanism of localization during early reperfusion. Circulation 1991;84:400–11.

    PubMed  CAS  Google Scholar 

  35. Force T, Alessandrini A, Bonventre JV. Cell signalling. In: Seldin DW, Giebisch G, editors. The kidney: physiology and pathophysiology. 3rd ed. Philadelphia: Lippincott Williams & Wilkins; 2000. p. 823–48.

    Google Scholar 

  36. Molkentin JD, Dorn GW II. Cytoplasmic signaling pathways that regulate cardiac hypertrophy. Annu Rev Physiol 2001;63:391–4266.

    Article  PubMed  CAS  Google Scholar 

  37. Narula J, Pandey P, Arbustini E, et al. Apoptosis in heart failure: release of cytochrome c from mitochondria and activation of caspase-3 in human cardiomyopathy. Proc Natl Acad Sci 1999;96:8144–99.

    Article  PubMed  CAS  Google Scholar 

  38. Hag S, Choukroun G, Lim HW, et al. Differential activation of signal transduction pathways in human hearts with hypertrophy versus advanced heart failure. Circulation 2001;103:670–7.

    Google Scholar 

  39. Cook SA, Sugden PH, Clerk A. Activation of c-Jun N-terminal kinases and p38-mitogen-activated protein kinases in human heart failure secondary to ischaemic heart disease. J Mol Cell Cardiol 1999;31:1429–31.

    Article  PubMed  CAS  Google Scholar 

  40. Aikawa R, Huggins GS, Snyder RO. Cardiomyocyte-specific gene expression following recombinant adeno-associated viral vector transduction. J Biol Chem 2002;277:18979–85.

    Article  PubMed  CAS  Google Scholar 

  41. Davies SP, Reddy H, Caivano M, Cohen P. Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem J 2000351(pt 1):95–105.

    Article  PubMed  CAS  Google Scholar 

  42. Dajani R, Fraser E, Roe SM, et al. Crystal structure of glycogen synthase kinase 3β structural basis for phosphate-primed substrate specificity and autoinhibition. Cell 2001;105:721–32.

    Article  PubMed  CAS  Google Scholar 

  43. Hag S, Choukroun G, Kang ZB, et al. Glycogen synthase kinase- 3β is a negative regulator of cardiomyocyte hypertrophy. J Cell Biol 2000;151:117–30.

    Article  Google Scholar 

  44. Ashkenazi A, Dixit VM. Apoptosis control by death and decoy receptors. Curr Opin Cell Biol 1999;11:255–60.

    Article  PubMed  CAS  Google Scholar 

  45. Hata A. TGFβ signaling and cancer. Exp Cell Res 2001;264:111–66.

    Article  PubMed  CAS  Google Scholar 

References

  1. Kirkeeide RL, Gould KL, Parsel L. Assessment of coronary stenoses by myocardial perfusion imaging during pharmacologic coronary vasodilation. VII. Validation of coronary flow reserve as a single integrated functional measure of stenosis severity reflecting all its geometric dimensions. J Am Coll Cardiol 1986;7:103- 13.

    PubMed  CAS  Google Scholar 

  2. Uren NG, Melin JA, De Bruyne B, et al. Relation between myocardial blood flow and the severity of coronary-artery stenosis. N Engl J Med 1994;330:1782–8.

    Article  PubMed  CAS  Google Scholar 

  3. Di Carli M, Czernin J, Hoh CK, et al. Relation among stenosis severity, myocardial blood flow, and flow reserve in patients with coronary artery disease. Circulation 1995;91:1944–51.

    PubMed  Google Scholar 

  4. Beanlands RS, Muzik O, Melon P, et al. Noninvasive quantification of regional myocardial flow reserve in patients with coronary atherosclerosis using nitrogen-13 ammonia positron emission tomography. Determination of extent of altered vascular reactivity. J Am Coll Cardiol 1995;26:1465–75.

    Article  PubMed  CAS  Google Scholar 

  5. Goldstein RA, Mullani NA, Marani SK, et al. Myocardial perfusion with rubidium-82. II, Effects of metabolic and pharmacologic interventions. J Nucl Med 1983;24:907–15.

    PubMed  CAS  Google Scholar 

  6. Gould KL, Goldstein RA, Mullani NA, et al. Noninvasive assessment of coronary stenoses by myocardial perfusion imaging during pharmacologic vasodilation. VIII. Clinical feasibility of positron cardiac imaging without a cyclotron using generator-produced rubidium-82. J Am Coll Cardiol 1986;7:775–89.

    PubMed  CAS  Google Scholar 

  7. Demer LL, Gould LK, Goldstein RA, et al. Assessment of coronary artery disease severity by positron emission tomography. Comparison with quantitative arteriography in 193 patients. Circulation 1989;79:825–35.

    PubMed  CAS  Google Scholar 

  8. Shiue CY, Wolf AP. J Labelled Comp Radiopharm 1981;18:1059–66.

    Article  CAS  Google Scholar 

  9. Di Carli MF. Predicting improved function after myocardial revascularization. Curr Opin Cardiol 1998;13:415–24.

    Article  PubMed  Google Scholar 

  10. Marwick TH, Zuchowski C, Lauer MS, et al. Functional status and quality of life in patients with heart failure undergoing coronary bypass surgery after assessment of myocardial viability. J Am Coll Cardiol 1999;33:750–8.

    Article  PubMed  CAS  Google Scholar 

  11. Di Carli MF, Asgarzadie F, Schelbert HR, et al. Quantitative relation between myocardial viability and improvement in heart failure symptoms after revascularization in patients with ischemic cardiomyopathy. Circulation 1995;92:3436–44.

    Google Scholar 

  12. Kashiwagi H, Tomiyama Y, Nozaki S, et al. Analyses of genetic abnormalities in type I CD36 deficiency in Japan: identification and cell biological characterization of two novel mutations that cause CD36 deficiency in man. Hum Genet 2001;108:459–66.

    Article  PubMed  CAS  Google Scholar 

  13. Coburn CT, Knapp FF Jr, Febbraio M, et al. Defective uptake and utilization of long chain fatty acids in muscle and adipose tissues of CD36 knockout mice. J Biol Chem 2000;275:32523–9.

    Article  PubMed  CAS  Google Scholar 

  14. Miyaoka K, Kuwasako T, Hirano K, et al. CD36 deficiency associated with insulin resistance. Lancet 2001;357:686–7.

    Article  PubMed  CAS  Google Scholar 

  15. Eckelman WC, Gibson RE. The design of site directed radiopharmaceuticals for use in drug discovery. In: Burns HD, Gibson RE, Dannals RF, Siegl PK. Nuclear imaging in drug discovery, development and approval. Boston: Birkhauser Boston, Inc; 1992. p. 113–34.

    Google Scholar 

  16. Eckelman WC. Mechanism of target specific uptake. In: Welch MJ, Redvanly C, editors. Handbook of radiopharmaceuticals: radiochemistry and applications. West Sussex: John Wiley & Sons, Ltd; 2002. p. 487–500.

    Google Scholar 

  17. The SOLVD Investigators. Effects of enalapril on survival in patients with reduced left ventricular ejection fractions and congestive heart failure. N Engl J Med 1991;325:293293–302.

    Google Scholar 

  18. The SOLVD Investigators. Effect of enalapril on mortality and the development of heart failure in asymptomatic patients with reduced left ventricular ejection fractions. N Engl J Med 1992;327: 685–91.

    Google Scholar 

  19. Cohn JN, Ferrari R, Sharpe N, et al. Cardiac remodeling- concepts and clinical implications: a consensus paper from an international forum on cardiac remodeling. J Am Coll Cardiol 2000;35:569–82.

    Article  PubMed  CAS  Google Scholar 

  20. Lee YHC, Kiesewetter DO, Lang L, et al. Synthesis of 4- [18F] fluorobenzoyllisinopril: a radioligand for angiotensin converting enzyme (ACE) imaging with positron emission tomography. J Labelled Comp Radiopharm 2001;44:S268–70.

    Google Scholar 

  21. Dilsizian V, Shirani J, Lee YHC, et al. Specific binding of [18F] fluorobenzoyl-lisinopril to angiotensin converting enzyme in human heart tissue of ischemic cardiomyopathy. Circulation 2001; 104:II-694.

    Google Scholar 

  22. Dilsizian V, Loredo ML, Ferrans VJ, et al. Evidence for increased angiotensin II type I receptor immunoreactivity in peri-infarct myocardium of human explanted hearts. J Am Coll Cardiol 2002;39:365A.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/BF02973339.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cerqueira, M., Udelson, J. Lake tahoe invitation meeting 2002. J Nucl Cardiol 10, 223–257 (2003). https://doi.org/10.1067/mnc.2003.391

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1067/mnc.2003.391

Keywords

Navigation