Journal of Nuclear Cardiology

, Volume 8, Issue 2, pp 188–196 | Cite as

The extracellular matrix in normal and diseased myocardium

  • Stefan HeinEmail author
  • Jutta Schaper
Topics in Molecular Biology


Laminin Nuclear Cardiology Triple Helix Diastolic Heart Failure Fibrillar Collagen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Powell DW, Mifflin RC, Valentich JD, Crowe SE, Saada JI, West AB. Myofibroblasts. I. Paracrine cells important in health and disease. Am J Physiol 1999;46:C1–19.Google Scholar
  2. 2.
    Hynes RO. Fibronectins. New York: Springer-Verlag; 1990.Google Scholar
  3. 3.
    Samuel JL, Farhadian F, Sabri A, Marotte F, Robert V, Rappaport L. Expression of fibronectin during fetal and postnatal development. Cardiovasc Res 1994;28:1653–61.PubMedCrossRefGoogle Scholar
  4. 4.
    Ohasi T, Kiehart DP, Erickson JP. Dynamics and elasticity of the fibronectin matrix in living cell culture visualized by fibronectin-green fluorescent protein. Proc Natl Acad Sci U S A 1999;96:2153–58.CrossRefGoogle Scholar
  5. 5.
    Hynes RO. The dynamic dialogue between cells and matrices: implications of fibronectin’s elasticity. Proc Natl Acad Sci U S A 1999;96: 2588–90.PubMedCrossRefGoogle Scholar
  6. 6.
    Knowlton AA, Connelly CM, Romo GM. Rapid expression of fibronectin in the rabbit heart after myocardial infarction with and without reperfusion. J Clin Invest 1992;89:1060–8.PubMedCrossRefGoogle Scholar
  7. 7.
    Ratasjka A, Campbell SE. Fibronectin accumulation within cardiac myocytes in rats with elevated plasma angiotensin II. Cardiovasc Pathol 1995;4:57–67.CrossRefGoogle Scholar
  8. 8.
    Villarreal FJ, Dillmann WH. Cardiac hypertrophy-induced changes in mRNA levels for TGF-??ß1, fibronectin, and collagen. Am J Physiol 1992;262:H1861–6.Google Scholar
  9. 9.
    Farhadian F, Contard F, Corbier A, Barrieux A, Rappaport L, Samuel J. Fibronectin expression during physiological and pathological cardiac growth. J Mol Cell Cardiol 1995;27:981–90.PubMedCrossRefGoogle Scholar
  10. 10.
    Ogawa E, Saito Y, Harada M, Kamitani S, Kuwahara K, Miyamoto Y, Ishikawa M, et al. Outside-in signalling of fibronectin stimulates cardiomyocyte hypertrophy in cultured neonatal rat ventricular myocytes. J Mol Cell Cardiol 2000;32:765–76.PubMedCrossRefGoogle Scholar
  11. 11.
    Ratajska A, Campbell SE, Sun Y, Weber K. Angiotensin-II associated cardiac myocyte necrosis: role of adrenal catecholamines. Cardiovasc Res 1994;28:684–90.PubMedCrossRefGoogle Scholar
  12. 12.
    Dalen H, Saetersdal T, Roli J, Larsen TH. Effect of collagenase on surface expression of immunoreactive fibronectin and laminin in freshly isolated myocytes. J Mol Cell Cardiol 1998;30:947–55.PubMedCrossRefGoogle Scholar
  13. 13.
    Timpl R. Structure and biological activity of basement membrane proteins. Eur J Biochem 1989;180:487–502.PubMedCrossRefGoogle Scholar
  14. 14.
    Oliviero P, Chassagne C, Corbier A, Hamon G, Marotte F, Charlemagne D, et al. Expression of laminin α2 chain during normal and pathological growth of myocardium in rat and human. Cardiovasc Res 2000;46:346–55.PubMedCrossRefGoogle Scholar
  15. 15.
    Zellner JL, Spinale FG, Eble DM, Hewett KW, Crawford FA Alterations in myocyte shape and basement membrane attachment with tachycardia-induced heart failure. Circ Res 1991;69:590–600.PubMedGoogle Scholar
  16. 16.
    Klappacher G, Franzen P, Haab D, Mehrabi M, Binder M, Plesch K, et al. Measuring extracellular matrix turnover in the serum of patients with idiopathic or ischemic dilated cardiomyopathy and impact on diagnosis and prognosis. Am J Cardiol 1995;75:913–8.PubMedCrossRefGoogle Scholar
  17. 17.
    Diez J, Laviades C. Monitoring fibrillar collagen turnover in hypertensive heart disease. Cardiovasc Res 1997;35:202–5.PubMedCrossRefGoogle Scholar
  18. 18.
    Querejeta R, Varo N, Lopez B, Larman M, Artinano E, Etayo JC, et al. Serum carboxy-terminal propeptide of procollagen type I is a marker of myocardial fibrosis in hypertensive heart disease. Circulation 2000;101: 1729–35.PubMedGoogle Scholar
  19. 19.
    Spach MS, Dolber PC. Relating extracellular potentials and their derivatives to anisotropic propagation at a microscopic level in human cardiac muscle. Evidence for electrical uncoupling of side-to-side fiber connections with increasing age. Circ Res 1986;58:356–71.PubMedGoogle Scholar
  20. 20.
    Aumailley M, Gayraud B. Structure and biological activity of the extracellular matrix. J Mol Med 1998;76:253–65.PubMedCrossRefGoogle Scholar
  21. 21.
    Aszodi A, Pfeifer A, Wendel M, Hiripi L, Fassler R. Mouse models for extracellular matrix diseases. J Mol Med 1998;76:238–52.PubMedCrossRefGoogle Scholar
  22. 22.
    Liu X, Wu H, Byrne M, Krane S, Jaenisch R. Type III collagen is crucial for collagen I fibrillogenesis and for normal cardiovascular development. Proc Natl Acad Sci U S A 1997;94:1852–6.PubMedCrossRefGoogle Scholar
  23. 23.
    Norton GR, Tsotetsi J, Trifunovic B, Hartford C, Candy GP, Woodiwiss AJ. Myocardial stiffness is attributed to alterations in cross-linked collagen rather than total collagen or phenotypes in spontaneously hypertensive rats. Circulation 1997;96:1991–8.PubMedGoogle Scholar
  24. 24.
    Woodiwiss AJ, Oosthuyse T, Norton GR. Reduced cardiac stiffness following exercise is associated with preserved myocardial collagen characteristics in the rat. Eur J Appl Physiol Occup Physiol 1998;78:148–54.PubMedCrossRefGoogle Scholar
  25. 25.
    Shirani J, Pick R, Roberts WC, Maron BJ. Morphology and significance of the left ventricular collagen network in young patients with hypertrophic cardiomyopathy and sudden cardiac death. J Am Coll Cardiol 2000;35:36–44.PubMedCrossRefGoogle Scholar
  26. 26.
    Conrad CH, Brooks WW, Hayes JA, Sen S, Robinson KG, Bing OHL. Myocardial fibrosis and stiffness with hypertrophy and heart failure in the spontaneously hypertensive rat. Circulation 1995;91:161–70.PubMedGoogle Scholar
  27. 27.
    Boluyt MO, O’Neill L, Meredith AL, Bing OHL, Brooks WW, Conrad CH, et al. Alterations in cardiac gene expression during the transition from stable hypertrophy to heart failure. Marked upregulation of genes encoding extracellular matrix components. Circ Res 1994;75:23–32.PubMedGoogle Scholar
  28. 28.
    Cohn JN, Ferrari R, Sharpe N. Cardiac remodeling-concepts and clinical implications: a consensus paper from an international forum on cardiac remodeling. J Am Coll Cardiol 2000;35:569–82.PubMedCrossRefGoogle Scholar
  29. 29.
    Swynghedauw B. Molecular mechanisms of myocardial remodeling. Physiol Rev 1999;79:215–62.PubMedGoogle Scholar
  30. 30.
    Mandinov L, Eberli FR, Seiler C, Hess OM. Diastolic heart failure. Cardiovasc Res 2000;45:813–25.PubMedCrossRefGoogle Scholar
  31. 31.
    Stuber M, Scheidegger MB, Fischer SE, Nagel E, Steinemann F, Hess OM, et al. Alterations in the local myocardial motion pattern in patients suffering from pressure overload due to aortic stenosis. Circulation 1999;100:361–8.PubMedGoogle Scholar
  32. 32.
    Julius BK, Spillmann M, Vassalli G, Villari B, Eberli FR, Hess OM. Angina pectoris in patients with aortic stenosis and normal coronary arteries. Mechanisms and pathophysiological concepts [see comments]. Circulation 1997;95:892–8.PubMedGoogle Scholar
  33. 33.
    Assayag P, Carre F, Chevalier B, Delcayre C, Mansier P, Swynghedauw B. Compensated cardiac hypertrophy: arrhythmogenicity and the new myocardial phenotype. I. Fibrosis. Cardiovasc Res 1997;34:439–44.PubMedCrossRefGoogle Scholar
  34. 34.
    Pogwizd SM, Corr PB. Mechanisms underlying the development of ventricular fibrillation during early myocardial ischemia. Circ Res 1990;66:672–95.PubMedGoogle Scholar
  35. 35.
    Spinale FG, Coker ML, Thomas CV, Walker JD, Mukherjee R, Hebbar L. Time-dependent changes in matrix metalloproteinase activity and expression during the progression of congestive heart failure: relation to ventricular and myocyte function. Circ Res 1998;82:482–95.PubMedGoogle Scholar
  36. 36.
    Spinale FG, Zellner JL, Johnson WS, Eble DM, Munyer PD. Cellular and extracellular remodeling with the development and recovery from tachycardia-induced cardiomyopathy: changes in fibrillar collagen, myocyte adhesion capacity and proteoglycans. J Mol Cell Cardiol 1996;28:1591–1608.PubMedCrossRefGoogle Scholar
  37. 37.
    Weber KT, Pick R, Silver MA, Moe GW, Janicki JS, Zucker IH, et al. Fibrillar collagen and remodeling of dilated canine left ventricle. Circulation 1990;82:1387–401.PubMedGoogle Scholar
  38. 38.
    Kim HE, Dalal SS, Young E, Legato MJ, Weisfeldt ML, D’Armiento J. Disruption of the myocardial extracellular matrix leads to cardiac dysfunction. J Clin Invest 2000;106:857–66.PubMedCrossRefGoogle Scholar
  39. 39.
    Tyagi SC, Campbell SE, Reddy HK, Tjahja E, Voelker DJ. Matrix metalloproteinase activity expression in infarcted, noninfarcted and dilated cardiomyopathic human hearts. Mol Cell Biochem 1996;155:13–21.PubMedCrossRefGoogle Scholar
  40. 40.
    Zhou GP, Kandala JC, Tyagi SC, Katwa LC, Weber KT. Effects of angiotensin Ii and aldosterone on collagen gene expression and protein turnover in cardiac fibroblasts. Mol Cell Biochem 1996; 154:171–8.PubMedCrossRefGoogle Scholar
  41. 41.
    Ramires FJA, Sun Y, Weber KT. Myocardial fibrosis associated with aldosterone or angiotensin II administration: attenuation by calcium channel blockade. J Mol Cell Cardiol 1998;30:475–83.PubMedCrossRefGoogle Scholar
  42. 42.
    Tyagi SC. Proteinases and myocardial extracellular matrix turnover. Mol Cell Biochem 1997;168:1–12.PubMedCrossRefGoogle Scholar
  43. 43.
    Sun Y, Weber KT. Cardiac remodelling by fibrous tissue: role of local factors and circulating hormones. Ann Med 1998;30:3–8.PubMedGoogle Scholar
  44. 44.
    Bishop JE, Lindahl G. Regulation of cardiovascular collagen synthesis by mechanical load. Cardiovasc Res 1999;42:27–44.PubMedCrossRefGoogle Scholar
  45. 45.
    Elsasser A, Schlepper M, Zimmermann R, Muller KD. The extracellular matrix in hibernating myocardium: a significant factor causing structural defects and cardiac dysfunction. Mol Cell Biochem 1998;186:147–58.PubMedCrossRefGoogle Scholar
  46. 46.
    Villari B, Vassalli G, Monrad ES, Chiariello M, Turina M, Hess OM. Normalization of diastolic dysfunction in aortic stenosis late after valve replacement. Circulation 1995;91:2353–8.PubMedGoogle Scholar
  47. 47.
    Villari B, Vassalli G, Betocchi S, Briguori C, Chiariello M, Hess OM. Normalization of left ventricular nonuniformity late after valve replacement for aortic stenosis. Am J Cardiol 1996;78:66–71.PubMedCrossRefGoogle Scholar
  48. 48.
    Brilla CG, Funck RC, Rupp H. Lisinopril-mediated regression of myocardial fibrosis in patients with hypertensive heart disease. Circulation 2000;102:1388–93.PubMedGoogle Scholar
  49. 49.
    Spinale FG, Coker ML, Bond BR, Zellner JL. Myocardial matrix degradation and metalloproteinase activation in the failing heart: a potential therapeutic target. Cardiovasc Res 2000;46:225–38.PubMedCrossRefGoogle Scholar

Copyright information

© American Society of Nuclear Cardiology 2001

Authors and Affiliations

  1. 1.Department of Cardiac SurgeryKerckhoff ClinicBad NauheimGermany
  2. 2.Max Planck InstituteBad NauheimGermany

Personalised recommendations