Advertisement

Journal of Nuclear Cardiology

, Volume 9, Issue 4, pp 419–428 | Cite as

Cardiac carbon 13 magnetic resonance spectroscopy: on the horizon or over the rainbow?

  • E. Douglas Lewandowski
Topics in integrated systems physiology

Keywords

Magnetic Resonance Spectroscopy Nuclear Cardiology Myocardial Viability Physiol Heart Circ Enrichment Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lewandowski ED. Metabolic mechanisms associated with antianginal therapy. Circ Res 2000;86:487–89.PubMedGoogle Scholar
  2. 2.
    Lewandowski ED, Johnston DL, Roberts R. Effects of inosine on glycolysis and contracture during myocardial ischemia. Circ Res 1991;68:578–87.PubMedGoogle Scholar
  3. 3.
    Czernin J, Porenta G, Brunken R, Krivokapich J, Chen K, Bennett R, et al. Regional blood flow, oxidative metabolism, and glucose utilization in patients with recent myocardial infarction. Circulation 1993;88:884–95.PubMedGoogle Scholar
  4. 4.
    Beer M, Buchner S, Sandstede J, Viehrig M, Lipke C, Krug A, et al. (31)P-MR spectroscopy for the evaluation of energy metabolism in intact residual myocardium after acute myocardial infarction in humans. MAGMA 2001;13:70–5.PubMedCrossRefGoogle Scholar
  5. 5.
    Schelbert HR. Metabolic imaging to assess myocardial viability. J Nucl Med 1994;35(Suppl 4):8S-14S.PubMedGoogle Scholar
  6. 6.
    Schwaiger M, Beanlands R, vom Dahl J. Metabolic tissue characterization in the failing heart by positron emission tomography. Eur Heart J 1994;15(Suppl D):14–9.Google Scholar
  7. 7.
    Wolpers HG, Burchert W, van den Hoff J, Weinhardt R, Meyer GJ, Lichtlen PR. Positron emission tomography. Threshold criteria of reversible dysfunction. Circulation 1997;18(95):1417–24.Google Scholar
  8. 8.
    Nakata T, Hashimoto A, Kobayashi H, Miyamoto K, Tsuchihashi K, Miura T, et al. Outcome significance of thallium-201 and iodine-123-BMIPP perfusion-metabolism mismatch in preinfarction angina. J Nucl Med 1998;39:1492–9.PubMedGoogle Scholar
  9. 9.
    Vitale GD, de Kemp RA, Ruddy TD, Williams K, Beanlands RS. Myocardial glucose utilization and optimization of (18)F-FDG PET imaging in patients with non-insulin-dependent diabetes mellitus, coronary artery disease, and left ventricular dysfunction. J Nucl Med 2001;42:1730–6.PubMedGoogle Scholar
  10. 10.
    Schelbert HR. 18F-deoxyglucose and the assessment of myocardial viability. Semin Nucl Med 2002;32:60–9.PubMedCrossRefGoogle Scholar
  11. 11.
    Knapp FF, Franken P, Kropp J. Cardiac SPECT with iodine-123-labeled fatty acids: evaluation of myocardial viability with BMIPP. J Nucl Med 1995;36:1022–30.PubMedGoogle Scholar
  12. 12.
    Nohara R, Okuda K, Ogino M, Hosokawa R, Tamaki N, Konishi J, et al. Evaluation of myocardial viability with iodine-123-BMIPP in a canine model. J Nucl Med 1996;37: 1403–7.PubMedGoogle Scholar
  13. 13.
    vom Dahl J, Altehoefer C, Sheehan FH, Buechin P, Schulz G, Schwarz ER, et al. Effect of myocardial viability assessed by technetium-99m-sestamibi SPECT and fluorine-18-FDG PET on clinical outcome in coronary artery disease. J Nucl Med 1997; 38:742–8.Google Scholar
  14. 14.
    Kofoed KF, Hansen PR, Holm S, Hove JD, Chen K, Jin W, et al. Regional myocardial oxygen consumption estimated by carbon-11 acetate and positron emission tomography before and after repetitive ischemia. J Nucl Cardiol 2000;7:228–34.PubMedCrossRefGoogle Scholar
  15. 15.
    Sciacca RR, Akinboboye O, Chou RL, Epstein S, Bergmann SR. Measurement of myocardial blood flow with PET using 1-11C-acetate. J Nucl Med 2001;42:63–70.PubMedGoogle Scholar
  16. 16.
    Lui Z, Johnson G, Beju D, Okada RD. Detection of myocardial viability in ischemic-reperfused rat hearts by Tc-99m sestamibi kinetics. J Nucl Cardiol 2001;8:677–86.CrossRefGoogle Scholar
  17. 17.
    Hariharan R, Bray M, Ganim R, Doenst T, Goodwin GW, Taegtmeyer H. Fundamental limitations of [18F] 2-deoxy-2-fluoro-D-glucose for assessing myocardial glucose uptake. Circulation 1995;91:2435–44.PubMedGoogle Scholar
  18. 18.
    Botker HA, Goodwin GA, Holden JE, Doenst T, Gjedde A, Taegtmeyer H. Myocardial glucose uptake measured with fluorodeoxyglucose: a proposed method to account for variable lumped constants. J Nucl Med 1999;40:1186–96.PubMedGoogle Scholar
  19. 19.
    Yu X, White LT, Doumen C, Damico LA, LaNoue KF, Alpert NM, Lewandowski ED. Kinetic analysis of 13C NMR spectra: metabolic flux, regulation, and compartmentation in hearts. Biophys J 1995;69:2090–103.PubMedCrossRefGoogle Scholar
  20. 20.
    Yu X, White LT, Alpert NM, Lewandowski ED. Subcellular metabolite transport and carbon isotope kinetics in the intramyocardial glutamate pool. Biochemistry 1996;35:6963–8.PubMedCrossRefGoogle Scholar
  21. 21.
    Griffin J, O’Donnell JM, White LT, Hajjar RJ, Lewandowski ED. Postnatal expression and activity of the 2-oxoglutarate malate carrier in intact hearts. Am J Physiol Cell Physiol 2000; 279:C1704–9.Google Scholar
  22. 22.
    O’Donnell JM, Alpert NM, White LT, Lewandowski ED. Coupling of mitochondrial fatty acid uptake to oxidative flux in the intact heart. Biophys J 2002;82:11–8.PubMedCrossRefGoogle Scholar
  23. 23.
    Wamblot RB, Henning SL, English DR, Dyachkova Y, Lopaschuk GD, Allard MF. Glucose utilization and glycogen turnover are accelerated in hypertrophied rat hearts during severe low-flow ischemia. J Mol Cell Cardiol 1999;31:493–502.CrossRefGoogle Scholar
  24. 24.
    Weiss RG, Kalil-Filho R, Herskowitz A, Chacko VP, Litt M. Tricarboxylic acid cycle activity in postischemic rat hearts. Circulation 1993;87:270–82.PubMedGoogle Scholar
  25. 25.
    Robitaille PML, Rath DP, Abduljalil AM, O’Donnell JM, Jiang Z, Zhang H, et al. Dynamic 13C NMR analysis of oxidative metabolism in the in vivo canine myocardium. J Biol Chem 1993;268:26296–301.PubMedGoogle Scholar
  26. 26.
    Lewandowski ED, Yu X, White LT, Doumen C, LaNoue KF, O’Donnell JM. Altered metabolite exchange between subcellular compartments in intact postischemic hearts. Circ Res 1997;81: 165–74.PubMedGoogle Scholar
  27. 27.
    O’Donnell JM, Doumen C, LaNoue KF, White LT, Yu X, Alpert NM, et al. Dehydrogenase regulation of metabolite oxidation and efflux from mitochondria of intact hearts. Am J Physiol Heart Circ Physiol 1998;274:H467–76.Google Scholar
  28. 28.
    O’Donnell JM, White LT, Lewandowski ED. Mitochondrial transporter responsiveness and metabolic flux homeostasis in postischemic hearts. Am J Physiol Heart Circ Physiol 1999;277: H866–73.Google Scholar
  29. 29.
    Jeffrey FM, Reshetov A, Storey CJ, Carvalho RA, Sherry AD, Malloy CR. Use of a single (13)C NMR resonance of glutamate for measuring oxygen consumption in tissue. Am J Physiol 1999;277(6 Pt 1):E1111–21.PubMedGoogle Scholar
  30. 30.
    Carvalho RA, Zhao P, Wiegers CB, Jeffrey FM, Malloy CR, Sherry AD. TCA cycle kinetics in the rat heart by analysis of (13)C isotopomers using indirect (1)H. Am J Physiol Heart Circ Physiol 2001;281:H1413–21.PubMedGoogle Scholar
  31. 31.
    Shen J, Petersen KF, Behar KL, Brown P, Nixon TW, Mason GF, et al. Determination of the rate of the glutamate/glutamine cycle in the human brain by in vivo 13C NMR. Proc Natl Acad Sci U S A 1999;96:8235–40.PubMedCrossRefGoogle Scholar
  32. 32.
    Gruetter R, Seaquist ER, Kim S, Ugurbil K. Localized in vivo 13C-NMR of glutamate metabolism in the human brain: initial results at 4 tesla. Dev Neurosci 1998;20:380–8.PubMedCrossRefGoogle Scholar
  33. 33.
    Chen W, Zhu XH, Gruetter R, Seaquist ER, Adriany G, Ugurbil K. Study of tricarboxylic acid cycle flux changes in human visual cortex during hemifield visual stimulation using (1)H-[(13)C] MRS and fMRI. Magn Reson Med 2001;45:349–55.PubMedCrossRefGoogle Scholar
  34. 34.
    Bottomly PA, Hardy CJ, Roemer PB, Mueller OM. Proton-decoupled, Overhauser-enhanced, spatially localized carbon-13 spectroscopy in humans. Magn Reson Med 1989;12:348–63.CrossRefGoogle Scholar
  35. 35.
    Chance EM, Seeholzer SH, Kobayashi K, Williamson JR. Mathematical analysis of isotope labeling in the citric acid cycle with applications to 13C NMR studies in perfused rat hearts. J Biol Chem 1983;258:13785–94.PubMedGoogle Scholar
  36. 36.
    Malloy CR, Sherry AD, Jeffrey FM. Carbon flux through citric acid cycle pathways in perfused heart by 13C NMR spectroscopy. FEBS Lett 1987;212:58–62.PubMedCrossRefGoogle Scholar
  37. 37.
    Jeffrey FM, Diczku V, Sherry AD, Malloy CR. Substrate selection in the isolated working rat heart: effects of reperfusion, afterload, and concentration. Basic Res Cardiol 1995;90:388–96.PubMedCrossRefGoogle Scholar
  38. 38.
    Collins-Nakai RL, Noseworthy D, Lopaschuk GD. Epinephrine increases ATP production in hearts by preferentially increasing glucose metabolism. Am J Physiol 1994;267(5 Pt 2):H1862–71.Google Scholar
  39. 39.
    Lewandowski ED, Kudej RK, White LT, O’Donnell JM, Vatner SF. Mitochondrial preference for short chain fatty acid oxidation during coronary artery constriction. Circulation 2002;105:367–72.PubMedCrossRefGoogle Scholar
  40. 40.
    Lewandowski ED, Hulbert C. Dynamic changes in 13C NMR spectra of intact hearts under conditions of varied metabolite enrichment. Magn Reson Med 1991;19:186–90.PubMedCrossRefGoogle Scholar
  41. 41.
    Lewandowski ED, Chari MV, Roberts R, Johnston DL. NMR studies of beta-oxidation and short chain fatty acid metabolism during recovery of reperfused hearts. Am J Physiol Heart Circ Physiol 1991;261:H354–63.Google Scholar
  42. 42.
    Wei H, Merkle H, Xu Y, Ellermann J, Sipprell K, Ugurbil K. Detection of 13C-labeled metabolites in the in vivo canine heart by B1 insensitive heteronuclear coherent polarization transfer and comparison of signal enhancement with NOE. Magn Reson Med 1997;37:327–30.PubMedCrossRefGoogle Scholar
  43. 43.
    Yu X, Alpert NM, Lewandowski ED. Modeling glutamate enrichment kinetics from dynamic 13C NMR spectra of hearts: theoretical analysis and practical considerations. Am J Physiol Cell Physiol 1997;272:C2037–48.Google Scholar
  44. 44.
    Bailey IA, Gadian DG, Matthews PM, Radda GK, Seeley PJ. Studies of metabolism in the isolated, perfused rat heart using 13C NMR. FEBS Lett 1981;26(123):315–8.CrossRefGoogle Scholar
  45. 45.
    Sherry AD, Nunnally RL, Peshock RM. Metabolic studies of pyruvate and lactate-perfused guinea pig hearts by 13C NMR. J Biol Chem 1985;260:9272–79.PubMedGoogle Scholar
  46. 46.
    Lewandowski ED, Johnston DL. Reduced substrate oxidation in post-ischemic myocardium: 13C and 31P NMR analyses. Am J Physiol Heart Circ Physiol 1990;258:H1357–65.Google Scholar
  47. 47.
    Weiss RG, Chacko VP, Glickson JD, Gerstenblith G. Comparative 13C and 31P NMR assessment of altered metabolism during grade reductions in coronary flow in intact rat hearts. Proc Natl Acad Sci U S A 1989;86:6426–30.PubMedCrossRefGoogle Scholar
  48. 48.
    Johnston DL, Lewandowski ED. Fatty acid metabolism and contractile function in the reperfused myocardium: multinuclear NMR studies of isolated rabbit hearts. Circ Res 1991;68:714–25.PubMedGoogle Scholar
  49. 49.
    Lewandowski ED. NMR evaluation of metabolic and respiratory support of workload in intact rabbit hearts. Circ Res 1992;70: 576–82.PubMedGoogle Scholar
  50. 50.
    Lewandowski ED, Doumen C, White LT, LaNoue KF, Damico LA, Yu X. Multiplet structure of 13C NMR signal from glutamate and direct detection of TCA cycle intermediates. Magn Reson Med 1996;35:149–54.PubMedCrossRefGoogle Scholar
  51. 51.
    Laughlin MR, Taylor J, Chesnick AS, DeGroot M, Balaban RS. Pyruvate and lactate metabolism in the in vivo dog heart. Am J Physiol 1993;264(6 Pt 2):H2068–79.Google Scholar
  52. 52.
    Kalil-Filho R, Gerstenblith G, Hansford RG, Chacko VP, Vandegaer K, Weiss RG. Regulation of myocardial glycogenolysis during post-ischemic reperfusion. J Mol Cell Cardiol 1991;23:1467–79.PubMedCrossRefGoogle Scholar
  53. 53.
    Weiss RG, de Albuquirque CP, Vandegaer K, Chacko VP, Gerstenblath G. Attenuated glycogenolysis reduced catabolite accumulation during ischemia in preconditioned rat hearts. Circ Res 1996;79:435–46.PubMedGoogle Scholar
  54. 54.
    Damico LA, White LT, Yu X, Lewandowski ED. Chemical versus isotopic equilibrium and the metabolic fate of glycolytic end products in the heart. J Mol Cell Cardiol 1996;28: 989–99.PubMedCrossRefGoogle Scholar
  55. 55.
    McNulty PH, Jagasia D, Cline CW, Ng CK, Whiting JM, Garg P, et al. Persistent changes in myocardial glucose metabolism in vivo during reperfusion of a limited-duration coronary occlusion. Circulation 2000;101:917–22.PubMedGoogle Scholar
  56. 56.
    McNulty PH, Cline GW, Whiting JM, Shulman GI. Regulation of myocardial [(13)C] glucose metabolism in conscious rats. Am J Physiol Heart Circ Physiol 2000;279:H375–81.Google Scholar
  57. 57.
    Lewandowski ED, White LT. Pyruvate dehydrogenase influences postischemic heart function. Circulation 1995;91:2071–9.PubMedGoogle Scholar
  58. 58.
    Rath DP, Zhu H, Tong X, Jiang Z, Hamlin RL, Robitaille PM. Dynamic 13C NRM analysis of pyruvate and lactate oxidation in the in vivo canine myocardium: evidence of reduced utilization with increased work. Magn Reson Med 1997;38:896–906.PubMedCrossRefGoogle Scholar
  59. 59.
    Lewandowski ED, Damico LA, White LT, Yu X. Cardiac responses to induced lactate oxidation: NMR analysis of metabolic equilibria. Am J Physiol Heart Circ Physiol 1995;269: H160–8.Google Scholar
  60. 60.
    White LT, O’Donnell JM, Griffin J, Lewandowski ED. Cytosolic redox state mediates postischemic response to pyruvate dehydrogenase stimulation. Am J Physiol Heart Circ Physiol 1999;277:H626–34.Google Scholar
  61. 61.
    Griffin J, White LT, Lewandowski ED. Proton production determines substrate dependent recovery of stunned hearts during pyruvate dehydrogenase stimulation. Am J Physiol Heart Circ Physiol 2000;279:H361–7.Google Scholar
  62. 62.
    Seymour AM, Chatham JC. The effects of hypertrophy and diabetes on cardiac pyruvate dehydrogenase activity. J Mol Cell Cardiol 1997;29:2771–8.PubMedCrossRefGoogle Scholar
  63. 63.
    Chatham JC, Forder JR. Relationship between cardiac function and substrate oxidation in hearts of diabetic rats. Am J Physiol 1997;273(1 Pt 2):H52–8.Google Scholar

Copyright information

© American Society of Nuclear Cardiology 2002

Authors and Affiliations

  1. 1.Department of Physiology and Biophysics, Section of Cardiology, Department of MedicineUniversity of IllinoisChicago, III

Personalised recommendations