Journal of Nuclear Cardiology

, Volume 9, Issue 1, pp 75–94 | Cite as

MIBG imaging

  • Amar D. Patel
  • Ami E. Iskandrian


Positron Emission Tomography Heart Rate Variability Nuclear Cardiology Autonomic Neuropathy MIBG Uptake 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baumgart D, Haude M, Gunter G, et al. Augmented alpha-adrenergic constriction of atherosclerotic human coronary arteries. Circulation 1999;99:2090–7.PubMedGoogle Scholar
  2. 2.
    Sisson JC, Bolgos G, Johnson J. Measuring acute changes in adrenergic nerve activity of the heart in the living animal. Am Heart J 1991;121:1119–23.PubMedCrossRefGoogle Scholar
  3. 3.
    Sisson JC, Shapiro B, Meyers L, et al. Metaiodobenzylguanidine to map scintigraphically the adrenergic nervous system in man. J Nucl Med 1987;28:1625–36.PubMedGoogle Scholar
  4. 4.
    Sisson JC, Wieland DM, Sherman P, et al. Metaiodobenzylguanidine as an index of the adrenergic nervous system integrity and function. J Nucl Med 1987;28:1620–4.PubMedGoogle Scholar
  5. 5.
    Kline RC, Swanson DP, Wieland DM, et al. Myocardial imaging in man with I-123 meta-iodobenzylguanidine. J Nucl Med 1981;22:129–32.PubMedGoogle Scholar
  6. 6.
    Gohl K, Feistel H, Weikl A, et al. Congenital myocardial sympathetic dysinnervation (CMSD)—a structural defect of idiopathic long QT syndrome. Pacing Clin Electrophysiol 1991;14:1544–53.PubMedCrossRefGoogle Scholar
  7. 7.
    Gill JS, Hunter GJ, Gane G, et al. Heterogeneity of the human myocardial sympathetic innervation: in vivo demonstration by iodine 123-labeled meta-iodobenzylguanidine scintigraphy. Am Heart J 1993;126:390–8.PubMedCrossRefGoogle Scholar
  8. 8.
    Wichter T, Hindricks G, Lerch H, et al. Regional myocardial sympathetic dysinnervation in arrhythmogenic right ventricular cardiomyopathy. Circulation 1994;89:667–83.PubMedGoogle Scholar
  9. 9.
    Langer A, Freeman MR, Josse RG, et al. Metaiodobenzylguanidine imaging in diabetes mellitus: assessment of cardiac sympathetic denervation and its relation to autonomic dysfunction and silent myocardial ischemia. J Am Coll Cardiol 1995;25:610–8.PubMedCrossRefGoogle Scholar
  10. 10.
    Matsuo S, Takahashi M, Nakamura Y, et al. Evaluation of cardiac sympathetic innervation with iodine-123-metaiodobenzylguanidine imaging in silent myocardial ischemia. J Nucl Med 1996;37:712–7.PubMedGoogle Scholar
  11. 11.
    Langen KJ, Ziegler D, Weise F, et al. Evaluation of QT interval length, QT dispersion and myocardial m-iodobenzylguanidine uptake in insulin-dependent diabetic patients with and without autonomic neuropathy. Clin Sci (Lond) 1997;92:325–33.Google Scholar
  12. 12.
    Kuwahara T, Hamada M, Hiwada K. Direct evidence of impaired cardiac sympathetic innervation in essential hypertensive patients with left ventricular hypertrophy. J Nucl Med 1998;39:1486–91.PubMedGoogle Scholar
  13. 13.
    Sakamaki F, Satoh T, Nagaya N, et al. Correlation between severity of pulmonary arterial hypertension and 123I-metaiodobenzylguanidine left ventricular imaging. J Nucl Med 2000;41:1127–33.PubMedGoogle Scholar
  14. 14.
    Nakajima K, Taki J, Tonami N, et al. Decreased 123I MIBG uptake and increased clearance in various cardiac diseases. Nucl Med Comm 1994;15:317–23.CrossRefGoogle Scholar
  15. 15.
    Tsuchimochi S, Tamaki N, Tadamura E, et al. Age and gender differences in normal myocardial adrenergic neuronal function evaluated by iodine-123-MIBG imaging. J Nucl Med 1995;36:969–74.PubMedGoogle Scholar
  16. 16.
    Hattori N, Tamaki N, Hayashi T, et al. Regional abnormality of iodine-123-MIBG in diabetic hearts. J Nucl Med 1996;37:1985–90.PubMedGoogle Scholar
  17. 17.
    Tamura K, Utsunomiya K, Nakatani Y, et al. Use of iodine-123 metaiodobenzylguanidine scintigraphy to assess cardiac sympathetic denervation and the impact of hypertension in patients with non-insulin-dependent diabetes mellitus. Eur J Nucl Med 1999;26:1310–6.PubMedCrossRefGoogle Scholar
  18. 18.
    Ziegler D, Weise F, Langen K, et al. Effect of glycaemic control on myocardial sympathetic innervation assessed by [123I]metaiodobenzyl-guanidine scintigraphy: a 4-year prospective study in IDDM patients. Diabetologia 1998;41:443–51.PubMedCrossRefGoogle Scholar
  19. 19.
    Zaret BL, Beller GA. Nuclear cardiology: state of the art and future directions. 2nd ed. St. Louis: Mosby; 1993.Google Scholar
  20. 20.
    Skorton DJ. Marcus cardiac imaging—a companion to Braunwald’s heart disease. 2nd ed. Philadelphia: Saunders; 1991.Google Scholar
  21. 21.
    Kammerling JJ, Green FJ, Watanabe AM, et al. Denervation supersensitivity of refractoriness in noninfarcted areas apical to transmural myocardial infarction. Circulation 1987;76:383–93.PubMedGoogle Scholar
  22. 22.
    Zipes DP. Influence of myocardial ischemia and infarction on autonomic innervation of heart. Circulation 1990;82:1095–105.PubMedGoogle Scholar
  23. 23.
    Minardo JD, Tuli MM, Mock BH, et al. Scintigraphic and electrophysiological evidence of canine myocardial sympathetic denervation and reinnervation produced by myocardial infarction or phenol application. Circulation 1988;78:1008–19.PubMedGoogle Scholar
  24. 24.
    Sisson JC, Lynch JJ, Johnson J, et al. Scintigraphic detection of regional disruption of adrenergic neurons in the heart. Am Heart J 1988;116:67–76.PubMedCrossRefGoogle Scholar
  25. 25.
    Dae MW, Herre JM, O’Connell JW. Scintigraphic assessment of sympathetic innervation after transmural versus nontransmural myocardial infarction. J Am Coll Cardiol 1991;17:1416–23.PubMedGoogle Scholar
  26. 26.
    Nohara R, Kambara H, Okuda K, et al. Effects of cardiac sympathetic nervous system on the stunned myocardium experimental study with 123I-metaiodobenzylguanidine. Jpn Circ J 1991;55:893–9.PubMedGoogle Scholar
  27. 27.
    Nishimura T, Oka H, Sago M, et al. Serial assessment of denervated but viable myocardium following acute myocardial infarction in dogs using iodine-123 metaiodobenzylguanidine and thallium-201 chloride myocardial single photon emission tomography. Eur J Nucl Med 1992;19:25–9.PubMedCrossRefGoogle Scholar
  28. 28.
    Newman D, Munoz L, Chin M, et al. Effects of canine myocardial infarction on sympathetic efferent neuronal function: scintigraphic and electrophysiologic correlates. Am Heart J 1993;126:1106–12.PubMedCrossRefGoogle Scholar
  29. 29.
    Dae MW, O’Connell JW, Botvinick EH, et al. Acute and chronic effects of transient myocardial ischemia on sympathetic nerve activity, density, and norepinephrine content. Cardiovasc Res 1995;30:270–80.PubMedGoogle Scholar
  30. 30.
    Takatsu H, Duncker CM, Arai M, et al. Cardiac sympathetic nerve function assessed by [131I]metaiodobenzylguanidine after ischemia and reperfusion in anesthetized dogs. J Nucl Cardiol 1997;4:33–41.CrossRefGoogle Scholar
  31. 31.
    Fagret D, Wolf JE, Comet M. Myocardial uptake of meta-[123I]-iodobenzylguanidine ([123I]-MIBG) in patients with myocardial infarct. Eur J Nucl Med 1989;15:624–8.PubMedCrossRefGoogle Scholar
  32. 32.
    Stanton MS, Tuli MM, Radtke NL, et al. Regional sympathetic denervation after myocardial infarction in humans detected noninvasively using I-123-metaiodobenzylguanidine. J Am Coll Cardiol 1989;14:1519–26.PubMedCrossRefGoogle Scholar
  33. 33.
    McGhie AI, Corbett JR, Akers MS, et al. Regional cardiac adrenergic function using I-123 meta-iodobenzylguanidine tomographic imaging after acute myocardial infarction. Am J Cardiol 1991;67:236–42.PubMedCrossRefGoogle Scholar
  34. 34.
    Spinnler MT, Lombardi F, Moretti C, et al. Evidence of functional alterations in sympathetic activity after myocardial infarction. Eur Heart J 1993;14:1334–43.PubMedGoogle Scholar
  35. 35.
    Hartikainen J, Mantysaari M, Kuikka J, et al. Extent of cardiac autonomic denervation in relation to angina on exercise test in patients with recent acute myocardial infarction. Am J Cardiol 1994;74:760–3.PubMedCrossRefGoogle Scholar
  36. 36.
    Lekakis J, Antoniou A, Vassilopoulos N, et al. I-123 metaiodobenzyl-guanidine—thallium-201 mismatch following myocardial infarction. Clin Cardiol 1994;17:21–5.PubMedCrossRefGoogle Scholar
  37. 37.
    Tomoda H, Yoshioka K, Shiina Y, et al. Regional sympathetic denervation detected by iodine 123 metaiodobenzylguanidine in non-Q-wave myocardial infarction and unstable angina. Am Heart J 1994;128:452–8.PubMedCrossRefGoogle Scholar
  38. 38.
    Nakajima K, Shuke N, Nitta Y, et al. Comparison of 99Tcm-pyrophosphate, 201Tl perfusion, 123I-labelled methyl-branched fatty acid and sympathetic imaging in acute coronary syndrome. Nucl Med Comm 1995;16:494–503.Google Scholar
  39. 39.
    Mantysaari M, Kuikka J, Hartikainen J, et al. Myocardial sympathetic nervous dysfunction detected with iodine-123-MIBG is associated with low heart rate variability after myocardial infarction. J Nucl Med 1995;36:956–61.PubMedGoogle Scholar
  40. 40.
    Podio V, Spinnler MT, Spandonari T, et al. Regional sympathetic denervation after myocardial infarction: a follow-up study using [123I] MIBG. Q J Nucl Med 1995;39:40–3.PubMedGoogle Scholar
  41. 41.
    Shimonagata T, Ishida Y, Hayashida K, et al. Scintigraphic assessment of silent myocardial ischaemia after early infarction using myocardial SPET imaging with 201Tl and 123I-MIBG. Nucl Med Comm 1995;16:893–900.CrossRefGoogle Scholar
  42. 42.
    Hartikainen J, Kuikka J, Mantysaari M, et al. Sympathetic reinnervation after myocardial infarction. Am J Cardiol 1996;77:5–9.PubMedCrossRefGoogle Scholar
  43. 43.
    Bengel FM, Barthel P, Matsunari I, et al. Kinetics of 123I-MIBG after acute myocardial infarction and reperfusion therapy. J Nucl Med 1999;40:904–10.PubMedGoogle Scholar
  44. 44.
    Estorch M, Flotats A, Serra-Grima R, et al. Influence of exercise rehabilitation on myocardial perfusion and sympathetic heart innervation in ischaemic heart disease. Eur J Nucl Med 2000;27:333–9.PubMedCrossRefGoogle Scholar
  45. 45.
    Matsunari I, Schricke U, Bengel FM, et al. Extent of cardiac sympathetic neuronal damage is determined by the area of ischemia in patients with acute coronary syndromes. Circulation 2000;101:2579–85.PubMedGoogle Scholar
  46. 46.
    Simula S, Lakka T, Laitinen T, et al. Cardiac adrenergic denervation in patients with non-Q-wave versus Q-wave myocardial infarction. Eur J Nucl Med 2000;27:816–21.PubMedCrossRefGoogle Scholar
  47. 47.
    Simula S, Lakka T, Kuikka J, et al. Cardiac adrenergic innervation within the first 3 months after acute myocardial infarction. Clin Physiol 2000;20:366–73.PubMedCrossRefGoogle Scholar
  48. 48.
    Inoue H, Zipes DP. Results of sympathetic denervation in the canine heart: supersensitivity that may be arrhythmogenic. Circulation 1987;75:877–87.PubMedGoogle Scholar
  49. 49.
    Tsutsui H, Ando S, Fukai T, et al. Detection of angina-provoking coronary stenosis by resting iodine 123 metaiodobenzylguanidine scintigraphy in patients with unstable angina pectoris. Am Heart J 1995;129:708–15.PubMedCrossRefGoogle Scholar
  50. 50.
    Takano H, Nakamura T, Satou T, et al. Regional myocardial sympathetic dysinnervation in patients with coronary vasospasm. Am J Cardiol 1995;75:324–9.PubMedCrossRefGoogle Scholar
  51. 51.
    Sakata K, Yoshida H, Hoshino T, et al. Sympathetic nerve activity in the spasm-induced coronary artery region is associated with disease activity of vasospastic angina. J Am Coll Cardiol 1996;28:460–4.PubMedCrossRefGoogle Scholar
  52. 52.
    Inobe Y, Kugiyama K, Miyagi H, et al. Long-lasting abnormalities in cardiac sympathetic nervous system in patients with coronary spastic angina: quantitative analysis with iodine 123 metaiodobenzylguanidine myocardial scintigraphy. Am Heart J 1997;134:112–8.PubMedCrossRefGoogle Scholar
  53. 53.
    Ha J, Lee J, Jang Y, et al. 123I-MIBG myocardial scintigraphy as a non-invasive screen for the diagnosis of coronary artery spasm. J Nucl Cardiol 1998;5:591–7.PubMedCrossRefGoogle Scholar
  54. 54.
    Tamaki N, Morita K, Kuge Y, et al. The role of fatty acids in cardiac imaging. J Nucl Med 2000;41:1525–34.PubMedGoogle Scholar
  55. 55.
    Ewing DJ, Campbell IW, Clarke BF, et al. Assessment of cardiovascular effects in diabetic autonomic neuropathy and prognostic implications. Ann Intern Med 1980;92:308–11.PubMedGoogle Scholar
  56. 56.
    Maser RE, Pfeifer MA, Dorman JS, et al. Diabetic autonomic neuropathy and cardiovascular risk. Arch Intern Med 1990;150:1218–22.PubMedCrossRefGoogle Scholar
  57. 57.
    Jermendy G, Toth L, Voros P, et al. Cardiac autonomic neuropathy and QT interval length. A follow-up study in diabetic patients. Acta Cardiol 1991;46:189–200.PubMedGoogle Scholar
  58. 58.
    Ewing DJ, Campbell IW, Clarke BF. The natural history of diabetic autonomic neuropathy. Q J Med 1980;49:95–108.PubMedGoogle Scholar
  59. 59.
    Rathmann W, Ziegler D, Jahnke M, et al. Mortality in diabetic patients with cardiovascular autonomic neuropathy. Diabet Med 1993;10:820–4.PubMedGoogle Scholar
  60. 60.
    Toyry J, Niskanen LK, Mantysaari MJ, et al. Occurrence, predictors, and clinical significance of autonomic neuropathy in NIDDM. Diabetes 1996;45:308–15.PubMedCrossRefGoogle Scholar
  61. 61.
    O’Brien IA, McFadden JP, Corrall RJM. The influence of autonomic neuropathy on mortality in insulin-dependent diabetes. Q J Med 1991;290:495–502.Google Scholar
  62. 62.
    Kim ST, Lee JD, Ryu YH, et al. Evaluation of cardiac sympathetic neuronal integrity in diabetic patients using iodine-123 metaiodobenzyl-guanidine. Eur J Nucl Med 1996;23:401–6.PubMedCrossRefGoogle Scholar
  63. 63.
    Mantysaari M, Kuikka J, Mustonen J, et al. Noninvasive detection of cardiac sympathetic nervous dysfunction in diabetic patients using [123I]metaiodobenzylguanidine. Diabetes 1992;41:1069–75.PubMedCrossRefGoogle Scholar
  64. 64.
    Kreiner G, Wolzt M, Fasching P, et al. Myocardial m-[123I]iodobenzyl-guanidine scintigraphy for the assessment of adrenergic cardiac innervation in patients with IDDM. Comparison with cardiovascular reflex tests and relationship to left ventricular function. Diabetes 1995;44:543–9.PubMedCrossRefGoogle Scholar
  65. 65.
    Murata K, Sumida Y, Murashima S, et al. A novel method for the assessment of autonomic neuropathy in type 2 diabetic patients: a comparative evaluation of 123I-MIBG myocardial scintigraphy and power spectral analysis of heart rate variability. Diabet Med 1995;13:266–72.CrossRefGoogle Scholar
  66. 66.
    Schnell O, Kirsch CM, Stemplinger J, et al. Scintigraphic evidence for cardiac sympathetic dysinnervation in long-term IDDM patients with and without ECG-based autonomic neuropathy. Diabetologia 1995;38:1345–52.PubMedCrossRefGoogle Scholar
  67. 67.
    Wei K, Dorian P, Newman D, et al. Association between QT dispersion and autonomic dysfunction in patients with diabetes mellitus. J Am Coll Cardiol 1995;26:859–63.PubMedCrossRefGoogle Scholar
  68. 68.
    Schnell O, Muhr D, Weiss M, et al. Reduced myocardial 123I-metaiodobenzylguanidine uptake in newly diagnosed IDDM patients. Diabetes 1996;45:801–5.PubMedCrossRefGoogle Scholar
  69. 69.
    Schnell O, Muhr D, Dresel S, et al. Autoantibodies against sympathetic ganglia and evidence of cardiac sympathetic dysinnervation in newly diagnosed and long-term IDDM patients. Diabetologia 1996;39:970–5.CrossRefGoogle Scholar
  70. 70.
    Schnell O, Muhr D, Dresel S, et al. Partial restoration of scintigraphically assessed cardiac sympathetic denervation in newly diagnosed patients with insulin-dependent (type 1) diabetes mellitus at one-year follow-up. Diabet Med 1996;14:57–62.CrossRefGoogle Scholar
  71. 71.
    Shimabukuro M, Chibana T, Yoshida H, et al. Increased QT dispersion and cardiac adrenergic dysinnervation in diabetic patients with autonomic neuropathy. Am J Cardiol 1996;78:1057–9.PubMedCrossRefGoogle Scholar
  72. 72.
    Turpeinen A, Vanninen E, Kuikka J, et al. Demonstration of regional sympathetic denervation of the heart in diabetes. Comparison between patients with NIDDM and IDDM. Diabetes Care 1996;10:1083–90.CrossRefGoogle Scholar
  73. 73.
    Freeman MR, Newman D, Dorian P, et al. Relation of direct assessment of cardiac autonomic function with metaiodobenzylguanidine imaging to heart rate variability in diabetes mellitus. Am J Cardiol 1997;80:247–50.PubMedCrossRefGoogle Scholar
  74. 74.
    Schnell O, Muhr D, Weiss M, et al. Three-year follow-up on scintigraphically assessed cardiac sympathetic denervation in patients with long-term insulin-dependent (type I) diabetes mellitus. J Diabetes Complications 1997;11:307–13.PubMedCrossRefGoogle Scholar
  75. 75.
    Muhr-Becker D, Weiss M, Tatsch K, et al. Scintigraphically assessed cardiac sympathetic dysinnervation in poorly controlled type 1 diabetes mellitus: one-year follow-up with improved metabolic control. Exp Clin Endocrinol Diabetes 1999;107:306–12.PubMedGoogle Scholar
  76. 76.
    Vanninen E, Mustonen J, Vainio P, et al. Left ventricular function and dimensions in newly diagnosed non-insulin-dependent diabetes mellitus. Am J Cardiol 1992;70:371–8.PubMedCrossRefGoogle Scholar
  77. 77.
    Zola B, Kahn J, Juni JE, et al. Abnormal cardiac function in diabetic patients with autonomic neuropathy in the absence of ischemic heart disease. J Clin Endocrinol Metab 1986;63:208–14.PubMedGoogle Scholar
  78. 78.
    Scognamiglio R, Avogaro A, Casara D, et al. Myocardial dysfunction and adrenergic cardiac innervation in patients with insulin-dependent diabetes mellitus. J Am Coll Cardiol 1998;31:404–12.PubMedCrossRefGoogle Scholar
  79. 79.
    Ewing DJ, Boland O, Neilson JMM, et al. Autonomic neuropathy, QT interval lengthening, and unexpected deaths in male diabetic patients. Diabetologia 1991;34:182–5.PubMedCrossRefGoogle Scholar
  80. 80.
    Sivieri R, Veglio M, Chinaglia P, et al. Prevalence of QT prolongation in a type 1 diabetic population and its association with autonomic neuropathy. The Neuropathy Study Group of the Italian Society for the Study of Diabetes. Diabet Med 1993;10:920–4.PubMedGoogle Scholar
  81. 81.
    Willich SN, Maclure M, Mittleman M, et al. Sudden cardiac death—support for a role of triggering in causation. Circulation 1993;87:1442–50.PubMedGoogle Scholar
  82. 82.
    Sheps DS, Heiss G. Sudden death and silent myocardial ischemia. Am Heart J 1988;117:177–84.CrossRefGoogle Scholar
  83. 83.
    Bellavere F, Ferri M, Guarini L, et al. Prolonged QT period in diabetic autonomic neuropathy: a possible role in sudden cardiac death? Br Heart J 1989;59:379–83.CrossRefGoogle Scholar
  84. 84.
    Kahn JK, Sisson JC, Vinik AI. QT Interval prolongation and sudden cardiac death in diabetic autonomic neuropathy. J Clin Endocrinol Metab 1986;64:751–4.CrossRefGoogle Scholar
  85. 85.
    Ewing DJ, Neilson JMM. QT interval length and diabetic autonomic neuropathy. Diabet Med 1989;7:23–6.Google Scholar
  86. 86.
    O’Sullivan JJ, Conroy RM, MacDonald K, et al. Silent ischemia in diabetic men with autonomic neuropathy. Br Heart J 1991;66:313–5.PubMedCrossRefGoogle Scholar
  87. 87.
    Naikan A, Harati Y, Rolak L, et al. Silent myocardial infarction and diabetic autonomic neuropathy. Ann Intern Med 1986;146:2229–30.CrossRefGoogle Scholar
  88. 88.
    Savage HR, Kissane JQ, Becher EL, et al. Analysis of ambulatory electrocardiograms in 14 patients who experienced sudden cardiac death during monitoring. Clin Cardiol 1987;10:621–32.PubMedCrossRefGoogle Scholar
  89. 89.
    Koistinen MJ, Airaksinen KE, Huikuri HV, et al. No difference in cardiac innervation of diabetic patients with painful and asymptomatic coronary artery disease. Diabetes Care 1996;19:231–35.PubMedCrossRefGoogle Scholar
  90. 90.
    Nitenberg A, Valensi P, Sachs R, et al. Impairment of coronary vascular reserve and ACh-induced coronary vasodilation in diabetic patients with angiographically normal coronary arteries and normal left ventricular systolic function. Diabetes 1993;42:1017–25.PubMedCrossRefGoogle Scholar
  91. 91.
    Arora GD, Reeves WC, Movahed A. Alteration of coronary perfusion reserve in hypertensive patients with diabetes. J Hum Hypertens 1994;8:51–7.PubMedGoogle Scholar
  92. 92.
    Nahser PJ Jr, Brown RE, Oskarsson H, et al. Maximal coronary flow reserve and metabolic coronary vasodilation in patients with diabetes mellitus. Circulation 1995;91:635–40.PubMedGoogle Scholar
  93. 93.
    Akasaka T, Yoshida K, Hozumi T, et al. Retinopathy identifies marked restriction of coronary flow reserve in patients with diabetes mellitus. J Am Coll Cardiol 1997;30:935–41.PubMedCrossRefGoogle Scholar
  94. 94.
    Meyer C, Schwaiger M. Myocardial blood flow and glucose metabolism in diabetes mellitus. Am J Cardiol 1997;80(3A):94A-101A.PubMedGoogle Scholar
  95. 95.
    Yokoyama I, Momomura SI, Ohtake T, et al. Reduced myocardial flow reserve in non-insulin-dependent diabetes mellitus. J Am Coll Cardiol 1997;30:1472–7.PubMedCrossRefGoogle Scholar
  96. 96.
    Pitkanen OP, Nuutila P, Raitakari OT, et al. Coronary flow reserve is reduced in young men with IDDM. Diabetes 1998;47:248–54.PubMedCrossRefGoogle Scholar
  97. 97.
    Stevens MJ, Dayanikli F, Raffel DM, et al. Scintigraphic assessment of regionalized defects in myocardial sympathetic innervation and blood flow regulation in diabetic patients with autonomic neuropathy. J Am Coll Cardiol 1998;31:1575–84.PubMedCrossRefGoogle Scholar
  98. 98.
    Di Carli MF, Bianco-Batlles D, Landa ME, et al. Effects of autonomic neuropathy on coronary blood flow in patients with diabetes mellitus. Circulation 1999;100:813–9.PubMedGoogle Scholar
  99. 99.
    Bohm M, Rosee KL, Schwinger RHG, et al. Evidence for reduction of norepinephrine uptake sites in the failing human heart. J Am Coll Cardiol 1995;25:146–53.PubMedCrossRefGoogle Scholar
  100. 100.
    Bristow MR, Ginsburg R, Minobe W, et al. Decreased catecholamine sensitivity and beta-adrenergic-receptor density in failing human hearts. N Engl J Med 1982;307:205–11.PubMedGoogle Scholar
  101. 101.
    Bristow MR, Minobe W, Rasmussen R, et al. Beta-adrenergic neuroeffector abnormalities in the failing human heart are produced by local rather than systemic mechanisms. J Clin Invest 1992;89:803–15.PubMedCrossRefGoogle Scholar
  102. 102.
    Bristow MR, Anderson FL, Port D, et al. Differences in beta-adrenergic neuroeffector mechanisms in ischemic versus idiopathic dilated cardiomyopathy. Circulation 1991;84:1024–39.PubMedGoogle Scholar
  103. 103.
    Ungerer M, Bohm M, Elce J, et al. Altered expression of beta-adrenergic receptor kinase and beta-1-adrenergic receptors in the failing human heart. Circulation 1993;87:454–63.PubMedGoogle Scholar
  104. 104.
    Rector TS, Olivari MT, Levine B, et al. Predicting survival for an individual with congestive heart failure using the plasma norepinephrine concentration. Am Heart J 1987;114:148–52.PubMedCrossRefGoogle Scholar
  105. 105.
    Kaye DM, Lefkovits J, Jennings GJ, et al. Adverse consequences of high sympathetic nervous activity in the failing human heart. J Am Coll Cardiol 1995;26:1257–63.PubMedCrossRefGoogle Scholar
  106. 106.
    Kaye DM, Lambert GW, Lefkovits J, et al. Neurochemical evidence of cardiac sympathetic activation and increased central nervous system norepinephrine turnover in severe congestive heart failure. J Am Coll Cardiol 1994;23:570–8.PubMedGoogle Scholar
  107. 107.
    Rundqvist B, Eisenhofer G, Elam M, et al. Attenuated cardiac sympathetic responsiveness during dynamic exercise in patients with heart failure. Circulation 1997;95:940–5.PubMedGoogle Scholar
  108. 108.
    Hasking GJ, Esler MD, Jennings GL, et al. Norepinephrine spillover to plasma in patients with congestive heart failure: evidence of increased overall and cardiorenal sympathetic nervous activity. Circulation 1986;73:615–21.PubMedGoogle Scholar
  109. 109.
    Henderson EB, Kahn JK, Corbett JR, et al. Abnormal I-123 metaiodobenzylguanidine myocardial washout and distribution may reflect myocardial adrenergic derangement in patients with congestive cardiomyopathy. Circulation 1988;78:1192–9.PubMedGoogle Scholar
  110. 110.
    Schofer J, Spielmann R, Schuchert A. Iodine-123 meta-iodobenzylguanidine scintigraphy: a noninvasive method to demonstrate myocardial adrenergic nervous system disintegrity in patients with idiopathic dilated cardiomyopathy. J Am Coll Cardiol 1988;12:1252–8.PubMedGoogle Scholar
  111. 111.
    Glowniak JV, Turner FE, Gray LL, et al. Iodine-123 metaiodobenzyl-guanidine imaging of the heart in idiopathic congestive cardiomyopathy and cardiac transplants. J Nucl Med 1989;30:1182–91.PubMedGoogle Scholar
  112. 112.
    Merlet P, Dubios-Rande JL, Adnot S, et al. Myocardial beta-adrenergic desensitization and neuronal norepinephrine uptake function in idiopathic dilated cardiomyopathy. J Cardiovasc Pharmacol 1992;19:10–6.PubMedCrossRefGoogle Scholar
  113. 113.
    Yamakado K, Takeda K, Kitano T, et al. Serial change of iodine-123 metaiodobenzylguanidine (MIBG) myocardial concentration in patients with dilated cardiomyopathy. Eur J Nucl Med 1992;19:265–70.PubMedCrossRefGoogle Scholar
  114. 114.
    Imamura Y, Ando H, Mitsuoka W, et al. Iodine-123 metaiodobenzyl-guanidine images reflect intense myocardial adrenergic nervous activity in congestive heart failure independent of underlying cause. J Am Coll Cardiol 1995;26:1594–9.PubMedCrossRefGoogle Scholar
  115. 115.
    Seto H, Shimizu M, Nozawa T, et al. Simultaneous assessment of regional adrenergic activity and perfusion with 123I-MIBG and 201Tl in congestive heart failure. Nucl Med Comm 1996;17:225–30.CrossRefGoogle Scholar
  116. 116.
    Murata K, Kusachi S, Murakami T, et al. Relation of iodine-123 metaiodobenzylguanidine myocardial scintigraphy to endomyocardial biopsy findings in patients with dilated cardiomyopathy. Clin Cardiol 1997;20:61–6.PubMedCrossRefGoogle Scholar
  117. 117.
    Lotze U, Kober A, Kaepplinger S, et al. Cardiac sympathetic activity as measured by myocardial 123-I-metaiodobenzylguanidine uptake and heart rate variability in idiopathic dilated cardiomyopathy. Am J Cardiol 1999;83:1548–57.PubMedCrossRefGoogle Scholar
  118. 118.
    Merlet P, Benvenuti C, Moyse D, et al. Prognostic value of MIBG imaging in idiopathic dilated cardiomyopathy. J Nucl Med 1999;40:917–23.PubMedGoogle Scholar
  119. 119.
    Maunoury C, Agostini D, Acar P, et al. Impairment of cardiac neuronal function in childhood dilated cardiomyopathy: an 123I-MIBG scintigraphic study. J Nucl Med 2000;41:400–4.PubMedGoogle Scholar
  120. 120.
    Shimizu M, Sugihara N, Kita Y, et al. Long-term course and cardiac sympathetic nerve activity in patients with hypertrophic cardiomyopathy. Br Heart J 1992;67:155–60.PubMedCrossRefGoogle Scholar
  121. 121.
    Nakajima K, Bunko H, Taki J, et al. Quantitative analysis of 123I-meta-iodobenzylguanidine (MIBG) uptake in hypertrophic cardiomyopathy. Am Heart J 1990;119:1329–37.PubMedCrossRefGoogle Scholar
  122. 122.
    Taki J, Nakajima K, Bunko H, et al. Whole-body distribution of iodine 123 metaiodobenzylguanidine in hypertrophic cardiomyopathy: significance of its washout from the heart. Eur J Nucl Med 1990;17:264–8.PubMedCrossRefGoogle Scholar
  123. 123.
    Fujiwara Y, Hamada M, Shigematsu Y, et al. Scintigraphic assessment of cardiac adrenergic innervation in patients with essential hypertension. J Cardiovasc Pharmacol 1991;17:S148–50.PubMedCrossRefGoogle Scholar
  124. 124.
    Rabinovitch MA, Rose CP, Schwab AJ, et al. A method of dynamic analysis of iodine-123-metaiodobenzylguanidine scintigrams in cardiac mechanical overload hypertrophy and failure. J Nucl Med 1993;34:589–600.PubMedGoogle Scholar
  125. 125.
    Imamura Y, Ando H, Ashihara T, et al. Myocardial adrenergic nervous activity is intensified in patients with heart failure without left ventricular volume or pressure overload. J Am Coll Cardiol 1996;28:371–5.PubMedCrossRefGoogle Scholar
  126. 126.
    Gradman A, Deedwania P, Cody R, et al. Predictors of total mortality and sudden death in mild to moderate heart failure. J Am Coll Cardiol 1989;14:564–70.PubMedGoogle Scholar
  127. 127.
    van den Broek SJ, van Veldhuisen DJ, de Graff PA, et al. Comparison between NYHA classification and peak oxygen consumption in the assessment of functional status and prognosis in patients with mild to moderate chronic congestive heart failure secondary to either ischemic or idiopathic dilated cardiomyopathy. Am J Cardiol 1992;70:359–63.PubMedCrossRefGoogle Scholar
  128. 128.
    Likoff MJ, Chandler SL, Kay HR. Clinical determinants of mortality in chronic congestive heart failure secondary to idiopathic dilated or to ischemic cardiomyopathy. Am J Cardiol 1987;59:634–8.PubMedCrossRefGoogle Scholar
  129. 129.
    Szlachcic J, Massie BM, Kramer BL, et al. Correlates and prognostic implication of exercise capacity in chronic congestive heart failure. Am J Cardiol 1985;55:1037–42.PubMedCrossRefGoogle Scholar
  130. 130.
    Keogh AM, Baron DW, Hickie JB. Prognostic guides in patients with idiopathic or ischemic dilated cardiomyopathy assessed for cardiac transplantation. Am J Cardiol 1990;65:903–8.PubMedCrossRefGoogle Scholar
  131. 131.
    Unverferth DV, Magorien RD, Moeschberger ML, et al. Factors influencing the one-year mortality of dilated cardiomyopathy. Am J Cardiol 1984;54:147–52.PubMedCrossRefGoogle Scholar
  132. 132.
    Merlet P, Valette H, Dubois-Rande JL, et al. Prognostic value of cardiac metaiodobenzylguanidine imaging in patients with heart failure. J Nucl Med 1992;33:471–7.PubMedGoogle Scholar
  133. 133.
    Nakata T, Miyamoto K, Doi A, et al. Cardiac death prediction and impaired cardiac sympathetic innervation assessed by MIBG in patients with failing and nonfailing hearts. J Nucl Cardiol 1998;5:579–90.PubMedCrossRefGoogle Scholar
  134. 134.
    Brophy J, Joseph L, Rouleau D. Beta-blockers in congestive heart failure: a Bayesian meta-analysis. Ann Intern Med 2001;134:550–60.PubMedGoogle Scholar
  135. 135.
    Suwa M, Otake Y, Moriguchi A, et al. Iodine-123 metaiodobenzyl-guanidine myocardial scintigraphy for prediction of response to beta-blocker therapy in patients with dilated cardiomyopathy. Am Heart J 1997;133:353–8.PubMedCrossRefGoogle Scholar
  136. 136.
    Fukuoka S, Hayashida K, Hirose Y, et al. Use of iodine-123 metaiodobenzylguanidine myocardial imaging to predict the effectiveness of beta-blocker therapy in patients with dilated cardiomyopathy. Eur J Nucl Med 1997;24:523–9.PubMedGoogle Scholar
  137. 137.
    Kakuchi H, Sasaki T, Ishida Y, et al. Clinical usefulness of 123I meta-iodobenzylguanidine imaging in predicting the effectiveness of beta blockers for patients with idiopathic dilated cardiomyopathy before and soon after treatment. Heart 1999;81:148–52.PubMedGoogle Scholar
  138. 138.
    Merlet P, Pouillart F, Dubois-Rande JL, et al. Sympathetic nerve alterations assessed with 123I-MIBG in the failing human heart. J Nucl Med 1999;40:224–31.PubMedGoogle Scholar
  139. 139.
    Toyama T, Aihara Y, Iwasaki T, et al. Cardiac sympathetic activity estimated by 123I-MIBG myocardial imaging in patients with dilated cardiomyopathy after beta-blocker or angiotensin-converting enzyme inhibitor therapy. J Nucl Med 1999;40:217–23.PubMedGoogle Scholar
  140. 140.
    Agostini D, Belin A, Amar MH, et al. Improvement of cardiac neuronal function After carvedilol treatment in dilated cardiomyopathy: a 123I-MIBG scintigraphic study. J Nucl Med 2000;41:845–51.PubMedGoogle Scholar
  141. 141.
    Choi JY, Lee KH, Hong KP, et al. Iodine-123 MIBG imaging before treatment of heart failure with carvedilol to predict improvement of left ventricular function and exercise capacity. J Nucl Cardiol 2001;8:4–9.PubMedCrossRefGoogle Scholar
  142. 142.
    Soeki T, Tamura Y, Bandou K, et al. Long-term effects of the angiotensin-converting enzyme inhibitor enalapril on chronic heart failure. Jpn Heart J 1998;39:743–51.PubMedGoogle Scholar
  143. 143.
    Takeishi Y, Atsumi H, Fujiwara S, et al. ACE inhibition reduces cardiac iodine-123-MIBG release in heart failure. J Nucl Med 1997;38:1085–9.PubMedGoogle Scholar
  144. 144.
    Somsen GA, van Vlies B, de Milliano PA, et al. Increased [123I]-metaiodobenzylguanidine uptake after enalapril treatment in patients with chronic heart failure. Heart 1996;76:218–22.PubMedCrossRefGoogle Scholar
  145. 145.
    Barr CS, Lang CC, Hanson J, et al. Effects of adding spironolactone to an angiotensin-converting enzyme inhibitor in chronic congestive heart failure secondary to coronary artery disease. Am J Cardiol 1995;76:1259–65.PubMedCrossRefGoogle Scholar
  146. 146.
    Lekakis J, Prassopoulos V, Athanassiadis P, et al. Doxorubicin-induced cardiac neurotoxicity: study with iodine 123-labeled metaiodobenzyl-guanidine scintigraphy. J Nucl Cardiol 1996;3:37–41.PubMedCrossRefGoogle Scholar
  147. 147.
    Valdes Olmos RA, ten Bokkel Huinink WW, ten Hoeve RF, et al. Assessment of anthracycline-related myocardial adrenergic derangement by [123I] metaiodobenzylguanidine scintigraphy. Eur J Cancer 1995;31A:26–31.Google Scholar
  148. 148.
    Carrio I, Estorch M, Berna L, et al. Indium-111-antimyosin and iodine-123-MIBG studies in early assessment of doxorubicin cardiotoxicity. J Nucl Med 1995;36:2044–9.PubMedGoogle Scholar
  149. 149.
    Dae MW, De Marco T, Botvinick EH, et al. Scintigraphic assessment of MIBG uptake in globally denervated human and canine hearts—implications for clinical studies. J Nucl Med 1992;33:1444–50.PubMedGoogle Scholar
  150. 150.
    De Marco T, Dae M, Yuen-Green MSF, et al. Iodine-123 metaiodobenzylguanidine scintigraphic assessment of the transplanted human heart: evidence for late reinnervation. J Am Coll Cardiol 1995;25:927–31.PubMedCrossRefGoogle Scholar
  151. 151.
    Guertner C, Krause BJ, Klepzig H, et al. Sympathetic re-innervation after heart transplantation: dual-isotope neurotransmitter scintigraphy, norepinephrine content and histological examination. Eur J Nucl Med 1995;22:443–52.PubMedCrossRefGoogle Scholar
  152. 152.
    Estorch M, Camprecios M, Flotats A, et al. Sympathetic reinnervation of cardiac allografts evaluated by 123I-MIBG imaging. J Nucl Med 1999;40:911–6.PubMedGoogle Scholar
  153. 153.
    Di Carli MF, Tobes MC, Mangner T, et al. Effects of cardiac sympathetic innervation on coronary blood flow. N Engl J Med 1997;336:1208–15.PubMedCrossRefGoogle Scholar
  154. 154.
    Wilson RF, Christensen BV, Olivari MT, et al. Evidence for structural sympathetic reinnervation after orthotopic cardiac transplantation in humans. Circulation 1991;83:1210–20.PubMedGoogle Scholar
  155. 155.
    Olivari MT, Levine TB, Ring WS, et al. Normalization of sympathetic nervous system function after orthotopic cardiac transplant in man. Circulation 1987;76:V62–4.PubMedGoogle Scholar
  156. 156.
    Halpert I, Goldberg AD, Levine AB, et al. Reinnervation of the transplanted human heart as evidenced from heart rate variability studies. Am J Cardiol 1996;77:180–3.PubMedCrossRefGoogle Scholar
  157. 157.
    Wilson RF, Laxson DD, Christensen BV, et al. Regional differences in sympathetic reinnervation after human orthotopic cardiac transplantation. Circulation 1993;88:165–71.PubMedGoogle Scholar
  158. 158.
    Stark RP, McGinn AL, Wilson RF. Chest pain in cardiac transplant recipients. N Engl J Med 1991;324:1791–4.PubMedCrossRefGoogle Scholar
  159. 159.
    Meredith IT, Broughton A, Jennings GL, et al. Evidence of a selective increase in cardiac sympathetic activity in patients with sustained ventricular arrhythmias. N Engl J Med 1991;325:618–24.PubMedGoogle Scholar
  160. 160.
    Schwartz PJ, Randall WC, Anderson EA, et al. Sudden cardiac death. Nonpharmacologic interventions. Circulation 1987;76:I215–9.PubMedGoogle Scholar
  161. 161.
    Inoue H, Zipes D. Time course of denervation of efferent sympathetic an vagal nerves after occlusion of the coronary artery in the canine heart. Circ Res 1988;62:1111–20.PubMedGoogle Scholar
  162. 162.
    Schafers M, Wichter T, Lerch H, et al. Cardiac 123I-MIBG uptake in idiopathic ventricular tachycardia and fibrillation. J Nucl Med 1999;40:1–5.PubMedGoogle Scholar
  163. 163.
    Belhassen B, Viskin S. Idiopathic ventricular tachycardia and fibrillation. J Cardiovasc Electrophysiol 1994;14:356–68.Google Scholar
  164. 164.
    Viskin S, Belhassen B. Idiopathic ventricular fibrillation. Am Heart J 1990;120:661–71.PubMedCrossRefGoogle Scholar
  165. 165.
    Yukinaka M, Nomura M, Ito S, et al. Mismatch between myocardial accumulation of 123I-MIBG and 99mTc-MIBI and late ventricular potentials in patients after myocardial infarction: association with the development of ventricular arrhythmias. Am Heart J 1998;136:859–67.PubMedCrossRefGoogle Scholar
  166. 166.
    Lerch H, Bartenstein P, Wichter T, et al. Sympathetic innervation of the left ventricle is impaired in arrhythmogenic right ventricular disease. Eur J Nucl Med 1993;20:207–12.PubMedCrossRefGoogle Scholar
  167. 167.
    Muller KD, Jakob H, Neuzner J, et al. 123I-metaiodobenzylguanidine scintigraphy in the detection of irregular regional sympathetic innervation in long QT syndrome. Eur Heart J 1993;14:316–25.PubMedGoogle Scholar
  168. 168.
    Yamanari H, Nakayama K, Morita H, et al. Effects of cardiac sympathetic innervation on regional wall motion abnormality in patients with long QT syndrome. Heart 2000;83:295–300.PubMedCrossRefGoogle Scholar
  169. 169.
    Gill JS, Hunter GJ, Gane J, et al. Asymmetry of cardiac [123I] metaiodobenzyl-guanidine scans in patients with ventricular tachycardia and a “clinically normal” heart. Br Heart J 1993;69:6–13.PubMedCrossRefGoogle Scholar
  170. 170.
    Morimitsu T, Miyahara Y, Sinboku H, et al. Iodine-123-metaiodobenzylguanidine myocardial imaging in patients with right ventricular pressure overload. J Nucl Med 1996;37:1343–6.PubMedGoogle Scholar
  171. 171.
    Fagret D, Wolf J, Vanzetto G, et al. Myocardial uptake of metaiodobenzylguanidine in patients with left ventricular hypertrophy secondary to aortic stenosis. J Nucl Med 1993;34:57–60.PubMedGoogle Scholar
  172. 172.
    Giordano A, Calcagni ML, Rufini V, et al. Use of [123I]MIBG to assess cardiac adrenergic innervation: experience in hypertensive cardiopathy and left ventricular aneurysms. Q J Nucl Med 1995;39:44–8.PubMedGoogle Scholar
  173. 173.
    Braune S, Reinhardt M, Bathmann J, et al. Impaired cardiac uptake of meta-[123I]iodobenzylguanidine in Parkinson’s disease with autonomic failure. Acta Neurol Scand 1998;97:307–14.PubMedCrossRefGoogle Scholar
  174. 174.
    Druschky A, Hilz MJ, Platsch G, et al. Differentiation of Parkinson’s disease and the multiple system atrophy in early disease stages by means of I-123-MIBG-SPECT. J Neurol Sci 2000;175:3–12.PubMedCrossRefGoogle Scholar
  175. 175.
    Takatsu H, Nishida H, Matsuo H, et al. Cardiac sympathetic denervation from the early stage of Parkinson’s disease: clinical and experimental with radiolabeled MIBG. J Nucl Med 2000;41:71–7.PubMedGoogle Scholar
  176. 176.
    Orimo S, Ozawa E, Nakade S, et al. (123)I-metaiodobenzylguanidine myocardial scintigraphy in Parkinson’s disease. J Neurol Neurosurg Psychiatry 1999;67:189–94.PubMedCrossRefGoogle Scholar
  177. 177.
    Iwasa K, Nakajima K, Yoshikawa H, et al. Decreased myocardial 123I-MIBG uptake in Parkinson’s disease. Acta Neurol Scand 1998;97:303–6.PubMedCrossRefGoogle Scholar
  178. 178.
    Satoh A, Serita T, Seto M, et al. Loss of 123I-MIBG uptake by the heart in Parkinson’s disease: assessment of cardiac sympathetic denervation and diagnostic value. J Nucl Med 1999;40:371–5.PubMedGoogle Scholar
  179. 179.
    Taki J, Nakajima K, Hwang EH, et al. Peripheral sympathetic dysfunction in patients with Parkinson’s disease without autonomic failure is heart selective and disease specific. Eur J Nucl Med 2000;27:566–73.PubMedCrossRefGoogle Scholar
  180. 180.
    Reinhardt MJ, Jungling FP, Krause TM, et al. Scintigraphic differentiation between two forms of primary dysautonomia early after onset of autonomic dysfunction: value of cardiac and pulmonary iodine-123 MIBG uptake. Eur J Nucl Med 2000;27:595–600.PubMedCrossRefGoogle Scholar
  181. 181.
    Delahaye N, Dinanian S, Slama M, et al. Cardiac sympathetic denervation in familial amyloid polyneuropathy assessed by iodine-123 metaiodobenzylguanidine scintigraphy and heart rate variability. Eur J Nucl Med 1999;26:416–24.PubMedCrossRefGoogle Scholar
  182. 182.
    Tanaka M, Hongo M, Kinoshita O, et al. Iodine-123 metaiodobenzyl-guanidine scintigraphic assessment of myocardial sympathetic innervation in patients in with familial amyloid polyneuropathy. J Am Coll Cardiol 1997;29:168–74.PubMedCrossRefGoogle Scholar
  183. 183.
    Bar Harbor Invitational Meeting 2000. J Nucl Cardiol 2001;8:224–316.Google Scholar

Copyright information

© American Society of Nuclear Cardiology 2002

Authors and Affiliations

  1. 1.Division of Cardiovascular Disease, Department of MedicineUniversity of Alabama at BirminghamBirmingham

Personalised recommendations