Skip to main content
Log in

Umwelttoxikologie im Spannungsfeld zwischen Grundlagenforschung und Anwendung: Das Beispiel der Metallothioneine als Biomarker

Ecotoxicology between basic research and application: Using metallothioneins (MTs) as biomarkers for environmental pollution

  • Umwelttoxikologie
  • Published:
Umweltwissenschaften und Schadstoff-Forschung Submit manuscript

Zusammenfassung

Hintergrund

Eines der zentralen Anliegen der Umwelttoxikologie ist die Entwicklung und Verfeinerung von Methoden und Ansätzen, die geeignet sind, die bestehende Artenvielfalt vor der Einwirkung toxischer Substanzen zu schützen. Eine immanente Schwierigkeit, der wir dabei auf Schritt und Tritt begegnen, ist die Tatsache, dass sich definierte toxische Effekte, die auf sub-individueller, individueller und artspezifischer Ebene beobachtbar sind, auf dem Niveau von Populationen oder Lebensgemeinschaften viel unspezifischer manifestieren. Daher sind wir bei der Interpretation solcher Veränderungen auf Hinweise angewiesen, die uns zu den basalen Mechanismen toxikologischer Wechselwirkungen führen. Nur dann, wenn wir diese Mechanismen auch verstehen, werden wir in der Lage sein, Arten; Populationen und Lebensgemeinschaften vor Schadstoff-Einwirkungen bestmöglich zu schützen. Ein gutes Beispiel für diesen Denkansatz sind jene toxikologischen Wechselwirkungen und Effekte auf verschiedenen Ebenen der biologischen Organisation, die mit der Expression von Metallothioneinen (MTs) einhergehen. MTs sind bekanntlich muttifunktionale Stressproteine, denen eine wichtige Aufgabe bei der Bindung, Entgiftung und Speicherung von metallischen Spurenelementen im allgemeinen zugeschrieben wird, deren Aufgaben im einzelnen jedoch intraund interspezifisch in einem breiten Funktions-Spektrum vari-ieren und weit über eine bloße Metall-Entgiftung hinausreichen können. Der Einsatz von MTs als Biomarker für Metallexpositionen ist vor diesem Hintergrund daher zwar ein brauchbarer und vielversprechender, jedoch keinesfalls trivialer Ansatz.

Bisherige Ergebnisse: Spezifität der MT-Antwort auf Proteinebene

Die Erfassung und Quantifizierung von MTs als Antwort auf Metallstress ist in all jenen Fällen und bei Arten angebracht, in denen die Induktion von MTs aufgrund von Metallbelastung gegenüber anderen Induktionsursachen beträchtlich überwiegt. Als Induktor unter den Metallen kommt gelegentlich nur eine Metallspecies (z.B. Cd2+) in Frage, sodass in einem solchen Fall die MT-Induktion als spezifischer Biomarker für die Belastung eines Habitats mit dem entsprechenden Metall herangezogen werden kann. Dies ist beispielsweise bei MTs bestimmer Helicidenarten der Fall. Bei den meisten Tierarten, wie z.B. bei Drosophila melanogaster oder bei zahlreichen Fischarten, kommen mehrere Metallspecies (Cd2+, Cu+, Zn2+) als MT-Induktoren in Frage, und dementsprechend komplexer ist die Induktions-Antwort. Zu beachten ist ferner, dass sich unterschiedliche MT-Isoformen in ihrer Induzierbarkeit durch verschiedene Metall-Species stark voneinander unterscheiden können. Komplizierter wird die Lage, wenn MTs nicht nur durch Metalle, sondern in signifikantem Ausmaß auch (oder ausschließlich) durch intrinsische Faktoren (z.B. die Gonaden-Reifung) oder durch andere, extrinsische Stressfaktoren induziert werden. Als solche kommen z.B. Schadstoffe in Frage, die oxidativen Stress auslösen. Da die Induktion in derartigen Fällen über komplizierte Induktionskaskaden ausgelöst wird, kann sich die entsprechende Induktionsantwort auch in ihrem zeitlichen Muster beträchtlich von einer Metall-bedingten Induktion unterschelden.

Molekulare Regulation der MT-Induktion

Völlig neue Aspekte ergeben sich dank molekularer Methoden und einer molekularen Betrachtungsweise der MT-Induktion. So zeigt sich, dass manche MT-Isoformen (z.B. bei der Weinbergschnecke) auf molekularer Ebene um mehr als das Hundertfache stärker induziert werden können als auf Proteinebene. Dabei kann z.B. die Transkriptionsrate anhand der Akkumulation von MT-mRNA mittels Real-Time-Detection-PCR quantitativ erfasst werden. Eine detaillierte Analyse zeigt darüber hinaus, dass manche MT-Gene eine Fülle von Bindungsstellen für Transkriptionsfaktoren zahlreicher anderer (also nicht nur Metallothionein-spezifischer) Stressproteine, sowie für Transkriptions-Enhancer, —Inhibitoren und —Silencer beherbergen. Dies ist ein Hinweis darauf, dass die MT-Expression in vivo einer fein regulierbaren Abstimmung mit zahlreichen intrinsischen und extrinsischen Modulatoren, Induktoren und Stressoren unterliegt (‘fine tuning’ und ‘cross talk’).

Neue Ansätze für die entwicklung von Biomarkern

In den meisten bisherigen Anwendungen konnte der Anstieg (oder der Abfall) der MT-Konzentration einer Tierart nach Metall-Exposition oder bei Einwirkung anderer Stressoren als Biomarker für diese Exposition herangezogen und quantitativ erfasst werden. Dabei blieb es mitunter fraglich, inwieweit die so beobachtete Biomarker-Antwort nich durch andere, physiologische oder extrinsische Faktoren (sogenannte ‘confounding factors’) mit beeinflusst bzw. moduliert wird. Die Verlagerung des Ansatzes auf die molekulare Ebene eröffnet allerdings nunmehr neue und vielversprechende Perspektiven zur Erfassung und Entwicklung zusätzlicher und wahrscheinlich viel empfindlicherer Biomarker für die Stress-Exposition, als sie bisher auf Protein-Ebene zur Verfügung standen.

Schlussfolgerungen

Eine der Konsequenzen dieser Betrachtungen ist sicherlich auch die Einsicht, dass biologische Grundlagenforschung und angewandte Umwelttoxikologie sinnvoller Weise nicht voneinander zu trennen sind. Das Bemühen um ein tieferes Verständnis toxikologischer Wechselwirkungen auf individueller und subindividueller Ebene ist für den angewandten Artenschutz auf Dauer nicht nur befruchtend, sondern unentbehrlich.

Abstract

Background

Ecotoxicology is devoted, besides other scopes, to develop and improve methods and approaches which aim at saving existent species from adverse effects of toxic chemicals. An inherent experience in this concern is the fact that distinct toxicological effects which can be observed at the sub-individual, individual and species-specific levels are manifested in a rather unspecific way at the population and community levels. The interpretation of adverse effects of pollution at these higher levels of biological hierarchy has to rely on those basic mechanisms of toxicological interactions which can only be observed at the individual and sub-individual levels of biological organization. Hence, understanding mechanisms of toxicity is just a precondition of successfully saving species, populations and communities from adverse toxicological effects. Nice examples for this kind of view are provided by the toxicological interactions and effects that are linked to the expression of metallothioniens (MTs). MTs are multifunctional stress proteins which play an important role in binding, detoxifying and storing certain metallic trace elements, and which exhibit, apart from metal-related tasks, a wide range of additional functions. Using MTs as biomarkers for environmental pollution seems therefore to be a promising, yet not very trivial, task.

Specificity of the MT response at the protein level

Assessment and quantification of MTs as a means of detection of metal stress may be promising in those cases and in species, where MT induction due to metal exposure strongly prevails over other kinds of induction. Rarely, one single metal species (such as Cd2+) can act as an MT inducer. If so, MT induction may serve as a specific biomarker for exposure of a single species or a habitat to the respective metal. This is true, for example, for MTs of certain helicid pulmonate snails. In most animals, however, such as in Drosophila melanogaster or in many fish species, several metals (Cd2+, Zn2+, Cu+) are able to induce MT expression, thus leading to correspondingly complex response patterns of MT induction. In addition, different MT isoforms within one animal species may differ with respect to their metal inducibility. Even more complicated are those response patterns where MT induction can occur, apart from metals, by intrinsic physiological processes (such as gonadal development), or by extrinsic environmental stress factors such as chemicals causing oxidative stress. In such instances, MT induction can be promoted through complicated signal cascades, leading to induction response patterns which may differ in their time course from a simple metal-based induction.

Molecular regulation of MT induction

New insight into the mechanisms of MT induction comes from a molecular approach. In fact, at the molecular level, some MT isoforms (such as those of the Roman snail) seem to be induced up to hundred times more efficiently compared to MT induction at the protein level. In such cases we may measure MT transcription rates by quantifying MT mRNA concentrations by means of real time detection PCR. A detailed structural analysis shows that some MT genes contain a variety of DNA binding sites for transcription factors which are involved, apart from metal induction, in stress-related transcriptional regulation, by acting as enhancers, inhibitors and silencers of MT induction. This indicates that MT expression in vivo may be controlled by complex interactions of extrinsic and intrinsic transcriptional modulators, giving rise to fine-tuned patterns of induction (‘fine tuning’ and ‘cross talk’).

New approaches for the development of novel biomarkers

Up to date, MT response patterns to stressors have mainly been detected by quantifying the increase or decrease of MT concentration as a biomarker for metal pollution or exposure to other stressors. One of the problems inherent in such an approach may be that sometimes it remains questionable, whether or not the observed biomarker response might have been influenced or modulated, apart from specific stressors, by additional physiological or environmental (so-called ‘confounding’) factors and stimuli. In this concern, the increasing significance of a molecular perspective to MT induction will be promising, allowing to establish additional and perhaps, more sensitive MT-related biomarkers, compared to those used so far at the protein level.

Conclusion

One of the important messages of such considerations will be the understanding that applied ecotoxicology needs, in order to be persistent, a strong link to fundamental research. This means that our attempts towards conservation and saving of species from pollution effects will only be successful, if we include in our efforts the focus at the basic mechanisms of toxic interactions which occur at the individual and sub-individual levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  • Amiard JC, Amiard-Triquet C, Barka S, Pellerin J, Rainbow PS (2006): Metallothionein in aquatic invertebrates: Their role in metal detoxification and their use as biomarkers. Aquat Toxicol 76 (2) 160–202

    Article  CAS  Google Scholar 

  • Balamurugan K, Egli D, Selvaraj A, Zhang B, Georgiev O, Schaffner W (2004): Metal-responsive transcription factor (MTF-1) and heavy metal stress response in Drosophila and mammalian cells: A functional comparison. Biol Chem 385 (7) 597–603

    Article  CAS  Google Scholar 

  • Baird SK, Kurz T, Brunk UT (2006): Metallothionein protects against oxidative stress-induced lysosomal destabilization. Biochem J 394, 275–283

    Article  CAS  Google Scholar 

  • Beattie JH, Owen HL, Wallace SM, Arthur JR, Kwun IS, Hawksworth GM, Wallace HM (2005): Metallothionein overexpression and resistance to toxic stress. Toxicol Lett 157 (1) 69–78

    Article  CAS  Google Scholar 

  • Bi Y, Palmiter RD, Wood KM, Ma Q (2004): Induction of metallothionein by phenolic antioxidants requires metal-activated transcription factor 1 (MTF-1) and zinc. Biochem J 380 (Pt 3) 695–703

    Article  CAS  Google Scholar 

  • Binz PA, Kägi JHR (1999): Metallothionein: molecular evolution and classification. Metallothionein IV. Birkhäuser Verlag, Basel

    Google Scholar 

  • Bobillier-Chaumont S, Maupoil V, Berthelot A (2006): Metall-othionein induction in the liver, kidney, heart and aorta of cadmium and isoproterenol treated rats. J Appl Toxicol 26 (1) 47–55

    Article  CAS  Google Scholar 

  • Butcher H, Kennette W, Collins O, Demoor J, Koropatnick J (2003): A sensitive time-resolved fluorescent immunoassay for metallothionein protein. J Immunol Methods 272 (1) 247–256

    Article  CAS  Google Scholar 

  • Cai L, Satoh M, Tohyama C, Cherian MG (1999): Metallothionien in radiation exposure: ist induction and protective role (Review). Toxicol 132, 85–98

    Article  CAS  Google Scholar 

  • Capdevila M, Domenech J, Pagani A, Tio L, Villarreal L, Atrian S (2005): Zn- and Cd-Metallothionein recombinant species from the most diverse Phyla may contain sulfide (S2-) ligands. Angw Chem Int Ed 44, 4618–4622

    Article  CAS  Google Scholar 

  • Chabicovsky M, Klepal W, Dallinger R (2004): Mechanisms of cadmium toxicity in terrestrial pulmonates: programmed cell death and metallothionein overload. Environ Toxicol Chem 23 (3) 648–655

    Article  CAS  Google Scholar 

  • Chu MM, Guo ZQ, Muto N, Itoh N, Tanaka K, Ren HW (2006): Development of ELISA for metallothionein-II allows determination of heavy metal pollution of fresh water. Front Biosci 11, 2113–2122

    Article  CAS  Google Scholar 

  • Dallinger R (1996): Metallothionein research in terrestrial invertebrates: Synopsis and perspectives. Comp Biochem Physiol 113C (2) 125–133

    CAS  Google Scholar 

  • Dallinger R, Egg M, Köck G, Hofer R (1996): The role of metallothionein in cadmium accumulation of Arctic char (Salvelinus alpinus) from high alpine lakes. Aquat Toxicol 38, 47–66

    Article  Google Scholar 

  • Dallinger R, Berger B, Hunziker PE, Kägi JHR (1997): Metallothionein in snail Cd and Cu metabolism. Nature (London) 388 (6639) 237–238

    Article  CAS  Google Scholar 

  • Dallinger R, Berger B, Gruber C, Stürzenbaum S (2000): Metallothioneins in Terrestrial Invertebrates: Structural Aspects, Biological Significance, and Implications for their Use as Biomarkers. Cell Mol Biol 46 (2) 331–346

    CAS  Google Scholar 

  • Dallinger R, Chabicovsky M, Berger B (2004a): Isoform-specific quantification of metallothionein in the terrestrial gastropod Helix pomatia L. I. Molecular, biochemical, and methodical background. Environ Toxicol Chem 23 (4) 890–901

    Article  CAS  Google Scholar 

  • Dallinger R, Chabicovsky M, Lagg B, Schipflinger R, Weirich HG, Berger B (2004b): Isoform-specific quantification of metallothionein in the terrestrial gastropod Helix pomatia L. II. A differential biomarker approach under laboratory and field conditions. Environ Toxicol Chem 23 (4) 902–910

    Article  CAS  Google Scholar 

  • Dallinger R, Lagg B, Egg M, Schipflinger R, Chabicovsky M (2004c): Cd accumulation and Cd-Metallothionein as a biomarker in Cepaea hortensis (Helicidae, Pulmonata) from laboratory exposure and metal-polluted habitats. Ecotoxicology 13 (8) 757–772

    Article  CAS  Google Scholar 

  • Dallinger R, Chabicovsky M, Hödl E, Prem C, Hunziker P, Manzl C (2005): Copper in Helix pomatia (Gastropoda) is regulated by one single cell type: differently responsive metal pools in rhogocytes. Am J Physiol Regul Integr Comp Physiol 289, 1185–1195

    Google Scholar 

  • Dragun Z, Raspor B, Erk M, Ivankovic D, Pavicic J (2006): The influence of the biometric parameters on metallothionein and metal level in the heat-treated cytosol of the whole soft tissues of transplanted mussels. Environ Monitor Asses 114 (1–3) 49–64

    Article  CAS  Google Scholar 

  • Duncan KE, Ngu TT, Chan J, Salgado MT, Merrifield ME, Stillman MJ (2006): Peptide folding, metal-binding mechanisms, and binding site structures in metallothioneins. Exp Biol Med (Maywood) 231 (9) 1488–1499

    CAS  Google Scholar 

  • Egli D, Yepiskoposyan H, Selvaraj A, Balamurugan K, Rajaram R, Simons A, Multhaup G, Mettler S, Varadanyan A, Georgiev O, Schaffner W (2006a): A family knockout of all four Drosophila metallothioneins reveals a central role in copper homeostasis and detoxification. Mol Cell Biol 26 (6) 2286–2296

    Article  CAS  Google Scholar 

  • Egli D, Domènech J, Selvaraj A, Balamurugan K, Hua H, Capdevila M, Georgiev O, Schaffner W, Atrian S (2006b): The four members of the Drosophila metallothionein family exhibit distinct yet overlapping roles in heavy metal homeostasis and detoxification. Genes to Cells 11, 647–658

    Article  CAS  Google Scholar 

  • Fletcher N, Wahlstrom D, Lundberg R, Nilsson CB, Nilsson KC, Stockling K, Hellmold H, Hakansson H (2005): 2, 3, 7, 8-Tetrachlorodibenzo-p-dioxin (TCDD) alters the mRNA expression of critical genes associated with cholesterol metabolism, bile acid biosynthesis, and bile transport in rat liver: a microarray study. Toxicol Appl Pharmacol 207 (1) 1–24

    Article  CAS  Google Scholar 

  • Fu C, Miao W (2006): Cloning and characterization of a new multi-stress inducible metallothionein gene in Tetrahymena pyriformis. Protist 157 (2) 193–203

    Article  CAS  Google Scholar 

  • Geret F, Cosson RP (2002): Inductioon of specific isoforms of metallothionein in mussel tissues after exposure to cadmium or mercury. Arch Environ Contam Toxicol 42 (1) 36–42

    Article  CAS  Google Scholar 

  • Gorbi S, Baldini C, Regoli F (2005): Sesonal variability of metallothioneins, cytochrome P450, bile metabolites and oxyradical metabolism in the European eel Anguilla anguilla L. (Anguillidae) and striped mullet Mugil cephalus L. (Mugilidae). Arch Environ Contam Toxicol 49 (1) 62–70

    Article  CAS  Google Scholar 

  • Greenbaum D, Colangelo C, Williams K, Gerstein M (2003): Comparing protein abundance and mRNA exporesion levels on a genomic scale. Gen Biol 4 (9) 117

    Article  Google Scholar 

  • Hack CJ, López JA (2004): An exploration of some factors affectign the correlation of mRNA and proteomic data. In: López JA, Benfenati E, Dubitzky W (eds), Proceedings of the KELSI Symposium, Milan, Italy, November 25–26. Springer, pp 9–19

  • Ivankovic D, Pavicic J, Erk M, Filipovic-Marijic V, Raspor B. (2005): Evaluation of the Mytilus gallprovincialis Lam. digestive gland metallothionein as a biomarker in a long-term field study: Seasonal and apatial variability. Mar Pollut Bull 50 (11) 1303–1313

    Article  CAS  Google Scholar 

  • Kägi JHR (1991): Overview of Metallothionein. Methods in Enzymology Vol. 205, 613–626

    Article  Google Scholar 

  • Kägi JHR (1993): Evolution, structure and chemical activity of class I metallothioneins: An overview. In: Suzuki KT, Imura N, Kimura M (eds), Metallothionein III. Birkhäuser Verlag, Basel (Switzerland), pp 29–55

    Google Scholar 

  • Kägi JHR, Kojima Y (1987): Chemistry and biochemistry of metallothionein. In: Kägi JHR, Kojima Y (eds), Metallothionein II. Birkhäuser Verlag, Basel, Switzerland, pp 25–61

    Google Scholar 

  • Kammenga JE, Dallinger R, Donker MH, Köhler HR, Simonsen V, Triebskorn R, Weeks JM (2000): Biomarkers in terrestrial invertebrates: Potential and Limitations for Ecotoxicological Soil Risk Assessment. Rev Environ Contam Toxicol 164, 93–147

    CAS  Google Scholar 

  • Kanekiyo M, Itoh N, Kawasaki A, Matsuda K, Nakanishi T, Tanaka K (2002): Metallothionein is required for zinc-induced expression of the macrophage colony stimulating factor gene. J Cell Biochem 86 (1) 145–153

    Article  CAS  Google Scholar 

  • Karin M, Haslinger A, Holtgreve H, Richards RI, Krauter P, Westphal HM, Beato M (1984): Characterization of DNA sequences through which cadmium and glucocorticoid hormones induce human metallothionein-IIA gene. Nature (London) 308, 513–519

    Article  CAS  Google Scholar 

  • Lacorn M, Lahrssen A, Rotzoll N, Simar TJ, Steinhart H (2001): Quantification of metallothionein isoforms in fish liver and its implication for biomonitoring. Environ Toxicol Chem 20 (1) 140–145

    Article  CAS  Google Scholar 

  • Meloni G, Zovo K, Kazantseva J, Palumaa P, Vasak M (2006): Organization and assembly of metal-thiolate clusters in epithelium-specific metallothionein-4. J Biol Chem 281 (21) 14588–14595

    Article  CAS  Google Scholar 

  • Mosleh YY, Paris-Palacios S, Arnoult F, Couderchet M, Bigianti-Risbourg S, Vernet G (2004): Metallothionein induction in aquatic oligochaete Tubifex tubifex exposed to herbicide isoproturon. Environ Toxicol 19 (1) 88–93

    Article  CAS  Google Scholar 

  • Mosleh YY, Paris-Palacios S, Couderchet M, Biagianti-Risbourg S, Vernet G (2005): Metallothionein induction, antioxidative responses, glycogen and growth changes in Tubifex tubifex (Oligochaeta) exposed to the fungicide, fenhexamid. Environ Pollut 135 (1) 73–82

    Article  CAS  Google Scholar 

  • Otsuka F (2004): Transcriptional regulation of the Metallothionein Genes. J Hlth Sci 50 (4) 332–335

    CAS  Google Scholar 

  • Perceval O, Couillard Y, Pinel-Alloul B, Giguere A, Campbell PG (2004): Meal-induced stress in baivalves living along a gradient of Cd contamination: Relating sub-cellular metal distribution to population-level responses. Aquat Toxcol 69 (4) 327–345

    Article  CAS  Google Scholar 

  • Roesijadi G (1994): Metallothionein induction as a measure of response to metal exposure in aquatic animals. Environ Health Perspect 102 (Suppl 12) 91–95

    CAS  Google Scholar 

  • Rubenstrunk A, Orsini C, Mahfoudi A, Scherman D (2003): Transcriptional activation of the metallothionein I gene by electric pulses in vivo: basis for the development of a new gene switch system. J Gene Med 5 (9) 773–783

    Article  CAS  Google Scholar 

  • Saydam N, Adams TK, Steiner F, Schaffner W, Freedman JH (2002): Regulation of metallothionein transcription by the metal-responsive transcription factor MTF-1. J Biol Chem 277 (23) 20438–20445

    Article  CAS  Google Scholar 

  • Schiedek D, Broeg K, Basiene J, Lehtonen KK, Gercken J, Pfeifer S, Vuontisjarvi H, Vuorinen PJ, Dedonyte V, Koehler A, Balk L, Schneider R (2006): Biomarker responses as indications of contaminant effects in blue mussel (Mytilus edulis) and female eelpout (Zoarces viviparus) from the southwestern Baltic Sea. Mar Pollut Bull 53 (8–9) 387–405

    Article  CAS  Google Scholar 

  • Shaw-Allen P, Elliott M, Jagoe CH (2003): A microscaled mercury saturation assay for metallothionein in fish. Environ Toxicol Chem 22 (9) 2005–2012

    Article  CAS  Google Scholar 

  • Serafim MA, Bebianno MJ (2001): Variation of metallothionein and metal concentrations in the digestive gland of the clam Ruditapes decussatus: sex and seasonal effects. Environ Toxicol Chem 20 (3) 544–552

    Article  CAS  Google Scholar 

  • Sugiura T, Kuroda E, Yamashita U (2004): Dysfunction of macrophages in metallothionein-knock out mice. J UOEH 26 (2) 193–205

    CAS  Google Scholar 

  • Summer KH, Klein D (1991): Determination of metallothionein in biological materials. Methods in Enzymology 205, 57–60

    Article  CAS  Google Scholar 

  • Theocharis SE, Margeli AP, Koutselinis A (2003): Metallothionein: a multifunctional protein from toxicity to cancer. Int J Biol Markers 18 (3) 162–169

    CAS  Google Scholar 

  • Valls M, Bofill R, Gonzalez-Duarte R, Gonzalez-Duarte P, Capdevilla M, Atrian S (2001): A new insight into metallothionein (MT) classification and evolution. The in vivo and in vitro metal binding features of Homarus americanus recombinant MT. J Biol Chem 276 (35) 32835–32843

    Article  CAS  Google Scholar 

  • Vasak M (2005): Advances in metallothionein structure and functions. J Trace Elem Med Biol 19 (1) 13–17

    Article  CAS  Google Scholar 

  • Viarengo A, Lafaurie M, Gabrielides GP, Fabbri R, Marro A, Romeo M (2000): Critical evaluation of an intercalibration exercise undertaken in the framework of the MED POL biomonitoring program. Mar Environ Res 49 (1) 1–18

    Article  CAS  Google Scholar 

  • Weeks JM, Spurgeon DJ, Svendsen C, Hankard PK, Kammenga JE, Dallinger R, Köhler HR, Simonsen V, Scott-Fordsmand J (2004): Critical analysis of soil invertebrate biomarkers: A field case study in Avonmouth, UK. Ecotoxicology 13 (8) 817–822

    Article  CAS  Google Scholar 

  • Werner J, Wautier K, Evans RE, Baron CL, Kidd K, Palace V (2003): Waterborne ethynylestradiol induces vitellogenein and alters metallothionein expression in lake trout (Salvelinus namaycush). Aquat Toxicol 62 (4) 321–328

    Article  CAS  Google Scholar 

  • Wlostowski T, Bonda E, Krasowska A (2004): Photoperiod affects hepatic and renal cadmium accumulation, metallothionein induction, and cadmium toxicity in the wild bank vole (Clethrionomys glareolus). Ecotoxicol Environ Saf 58 (1) 29–36

    Article  CAS  Google Scholar 

  • Yoshida M, Saegusa Y, Fukuda A, Akama Y, Owada S (2005): Measurement of radical-scavenging ability in hepatic metallothionein of rat using in vivo electron spin resonance spectroscopy. Toxicology 213 (1–2) 74–80

    Article  CAS  Google Scholar 

  • Yin X, Knecht DA, Lynes MA (2005): Metallothionein mediates leukocyte chemotaxis. BMC Immunol 6, 21

    Article  CAS  Google Scholar 

  • Zorita I, Strogyloudi E, Buxens A, Mazon LI, Papathanassiou E, Soto M, Cajaraville MP (2005): Application of two SH-based methods for metallothionein determination in mussels and intercalibration of the spectorphotometric method: Laboratory and field studies in the Meditearranean Sea. Biomarkers 10 (5) 342–359

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reinhard Dallinger.

Additional information

OnlineFirst: 20. März 2007

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dallinger, R. Umwelttoxikologie im Spannungsfeld zwischen Grundlagenforschung und Anwendung: Das Beispiel der Metallothioneine als Biomarker. UWSF - Z Umweltchem Ökotox 19 (Suppl 1), 35–42 (2007). https://doi.org/10.1065/uwsf2007.03.177

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1065/uwsf2007.03.177

Schlagwörter

Keywords

Navigation