Ozon in Waldökosystemen aus atmosphärenchemischer und pflanzenphysiologischer Sicht

Ozone in forest ecosystems from the viewpoint of atmospheric chemistry and plant physiology — A synopsis

Eine synopse

Zusammenfassung

Steigende Ozonkonzentrationen in Waldökosystemen und die nachweislich phytotoxische Wirkung dieses Spurengases erfordern eine realistische Bewertung des Risikopotenzials von Ozon für Waldökosysteme. Dies wird durch einen international anerkannten, flussbasierten Qualitätsstandard gewährleistet. Die Beeinflussung der Ozonflüsse im Kronenraum durch chemische Reaktionen mit Stickoxiden und biogenen Kohlenwasserstoffen sowie Oberflächenreaktionen erfordern eine Trennung der stomatären Ozonaufnahme von den übrigen Transportpfader. Zur Bestimmung der für die Ozonchemie relevanten Spurengase ist die Eddy-Kovarianztechnik die Methode der Wahl. Diese Technik wird auch zur Ermittlung der stomatären Leitfähigkeit auf Basis von Verdunstungsmessungen und in Kombination mit PTR-MS zur Emissionsmessung biogener Kohlenwasserstoffe eingsetzt.

Obwohl sich in den vergangenen Jahren die Forschung zunehmend auf Messungen im Kronenraum konzentrierte, sind die dort ablaufenden Prozesse noch nicht vollständig verstanden. Beispielsweise gibt es beim Vergleich verschiedener Studien große Unterschiede in den Verhältnissen zwischen stomatärer Ozonaufnahme, nicht-stomatärer Deposition und Gasphasenchemie. Außerdem sind vertikale Konzentrationsgradienten im Kronenraum, gemessen an verschiedenen Waldstandorten, nicht konsistent und existierende Depositionsmodelle berücksichtigen kaum chemische Umsetzungen sowie Detoxifikationsprozesse. Nur eine gleichzeitige Messung aller photochemisch relevanten Spurengase sowie pflanzenphysiologischer Parameter an verschiedenen Standorten und Waldgesellschaften über die gesamte Vegetationsperiode und eine Parametrisierung der Modelle an Hand dieser Freilandmessdaten kann zu einer Aufklärung der Kronenraumprozesse beitragen und eine realistische Risikobewertung sicherstellen.

Abstract

The trend of rising ozone concentrations in forest ecosystems and the phytotoxicity of ozone demand a realistic risk assessment according to an internationally accepted and flux-based quality standard. Ozone fluxes within the canopy are influenced by chemical gas-phase reactions with nitrogen oxide and biogenic hydrocarbons and by surface deposition processes. Therefore, a differentiation of the ozone flux within the canopy is needed between stomatal uptake and other transport pathways. The Eddy Covariance technique is the method of choice for the determination of trace gas fluxes relevant for ozone chemistry. This method is also used for stomatal conductance measurements based on evapotranspiration fluxes and for emission measurements of biogenic hydrocarbons by PTR-MS.

Although considerably research efforts were directed to canopy measurements in recent years, the underlying processes are not fully understood yet. Thus, major differences occur in the ratios of stomatal ozone uptake, non-stomatal deposition and gas-phase chemistry between different studies. Furthermore, the vertical concentration gradients within the canopy measured at several forest sites are rather inconsistent and the existing deposition models do rarely account for chemical transformation and detoxification processes.

Only a simultaneous measurement of all photochemically relevant trace gases, plant physiological parameters at different sites and forest species over entire vegetation periods, and model parameterization according to the measurement results from the experimental sites will contribute to the clarification of the canopy processes and will ensure realistic risk assessments.

This is a preview of subscription content, access via your institution.

Literatur

  1. Ballarin-Denti A, Oksanen E (2003): Report from the working group on forests. In: Karlsson PE, Selldén G, Pleijel H (eds), Establishing Ozone Critical Levels II. 2003 UNECE workshop report. IVL report B1523 A, Swedish Environ Res Inst, Gothenburg, Sweden, S. 28–33

    Google Scholar 

  2. Brüggemann N, Butterbach-Bahl K, Knoche R, Werner C (2003): Auswirkungen des regionalen Klimawandels auf die Höhe der Emissionen von NO und N2O aus Wäldern in Deutschland. In: Bernhofer C, Goldberg V (Hrsg.), Tagungsband 5. BIOMET-Tagung, Tharandter Klimaprotokolle 9, 173, Dresden

  3. Bussotti F, Ferretti M (1998): Air pollution, forest condition and forest decline in Southern Europe: an overview. Environ Pollut 101, 49–65

    Article  CAS  Google Scholar 

  4. Chmielewski FM, Rötzer T (2002): Annual and spatial variability of the beginnign of growing season in Europe in relation to air temperature changes. Climate Res 19, 257–264

    Article  Google Scholar 

  5. Coe H, Gallagher MW, Choularton TW, Dore C (1995): Canopy scale measurements of stomatal and cuticular O3 uptake by Sitka spruce. Atmos Environ 29 (12) 1413–1423

    Article  CAS  Google Scholar 

  6. Coulston JW, Smith GC, Smith WD (2003): Regional assessment of ozone sensitive tree species using bioindicator plants. Environ Monitor Assess 83, 113–127

    Article  CAS  Google Scholar 

  7. De Vries W, Klap JM, Erisman JW (2000): Effects of environmental stress on forest crown condition in Europe. Part I: Hypotheses and approach to the study. Water Air Soil Pollut 119, 317–333

    Article  Google Scholar 

  8. Duyzer J, Fowler D (1994): Modelling land atmosphere exchange of gaseous oxides of nitrogen in Europe. Tellus, 46B, 353–372

    CAS  Google Scholar 

  9. Duyzer J, Weststrate H (1995): The use of the gradient method to monitor trace gas fluxes over forest: Flux-profile functions for ozone and heat. In: Heij GJ, Erisman JW (eds), Acid Rain Research: Do we have enough answers. Elsevier Science, S. 21–30

  10. Emberson LD, Ashmore MR, Cambridge HM, Simpson D, Tuovinen JP (2000): Modelling stomatal ozone flux across Europe. Environ Pollut 109, 403–413

    Article  CAS  Google Scholar 

  11. Fall R (1999): Biogenic emissions of volatile organic compounds from higher plants. In: Hewitt CN (ed), Reactive Hydrocarbons and the Atmosphere. Academic Press, New York, S. 41–96

    Google Scholar 

  12. Fehsenfeld F, Calvert J, Goldan R, Guenther AB, Hewitt CN, Lamb B, Liu S, Trainer M, Westberg H, Zimmerman P (1992): Emissions of volatile organic compounds from vegetation and the implications for atmospheric chemistry. Global Biochem Cycle 6, 389–430

    Article  CAS  Google Scholar 

  13. Ferretti M, Bussotti F, Cozzi A, Cenni E (1995): Forest decline and environmental pollution in Italy — A critical reassessment, In: Lorenzini G, Soldatini GF (eds), Responses of Plants to Air Pollution — Biological and Economic Aspects, Pacini Editore, Pisa, S. 248–265

    Google Scholar 

  14. Flagler RB (ed) (1998): Recognition of Air Pollution Injury to Vegetation: A Pictorial Atlas. A&WMA, Pittsburgh, 160 S.

    Google Scholar 

  15. Foken T (2003): Angewandte Meteorologie. Mikrometeorologische Methoden. Springer, Heidelberg, 289 S.

    Google Scholar 

  16. Foken T, Dlugi R, Kramm G (1995): On the determination of dry deposition and emission of gaseous compounds at the biosphereamosphere interface. Meteorol Z, N.F. 4, 91–118

    Google Scholar 

  17. Fowler D, Flechard C, Cape JN, Storeton-West RL, Coyle M (2001): Measurements of ozone deposition to vegetation quantifying the flux, the stomatal and non-stomatal components. Water Air Soil Pollut 130, 63–74

    Article  CAS  Google Scholar 

  18. Fuhrer J, Skarby L, Ashmore MR (1997): Critical levels for ozone effects on vegetation in Europe. Environ Pollut 97, 91–106

    Article  CAS  Google Scholar 

  19. Gao W, Wesely ML, Doskey PV (1993): Numerical modeling of the turbulent diffusion and chemistry of NOx, O3, isoprene, and other reactive trace gases in and above a forest canopy. J Geophys Res 98, D10, 18339–18353

    Article  CAS  Google Scholar 

  20. Grulke NE (2003): Physiological basis of ozone injury assessment in Sierra Nevadan conifers. In: Bytnerowicz A, Arbaugh M, Alonso R (eds), Assessment of ozone distribution and its effects on Sierra Nevada ecosystems. Elsevier Publishers, The Hague, Netherlands, 388 S.

    Google Scholar 

  21. Grünhage L, Haenel HD, Jäger HJ (2000): The exchange of ozone between vegetation and atmosphere: micrometeorological measurement techniques and models. Environ Pollut 109, 373–392

    Article  Google Scholar 

  22. Grünhage L, Krupa SV, Legge AH, Jäger HJ (2002): Ambient fluxbased critical values of ozone for protecting vegetation: differing spatial scales and uncertainties in risk assessment. In: Karlsson PE, Selldén G, Pleijel H (eds), Establishing Ozone Critical Levels II. 2003 UNECE workshop report. IVL report B1523 C, Swedish Environ Res Inst, Gothenburg, Sweden, S. 51–65

    Google Scholar 

  23. Günthardt-Goerg MS, Landolt W, Bucher JB (1996): Ursachen von Waldschäden. Wald und Holz 77, 16–19

    Google Scholar 

  24. Günthardt-Goerg MS, Mc Quattie CJ, Scheidegger C, Rhiner C, Matyssek R (1997): Ozone-induced cytochemical and ultrastructural changes in leaf mesophyll cell walls. Can J Forest Res 27, 453–463

    Article  Google Scholar 

  25. Guenther AB, Zimmerman PR, Harley PC, Monson RK, Fall R (1993): Isoprene and monoterpene emision rate variability —model evaluations and sensitivity analyses. J Geophys Res 98 (D7), 12609–12617

    Article  Google Scholar 

  26. Guicherit R, Roemer M (2000): Troposphheric ozone trends. Chemosphere — Global Change Sci 2, 167–183

    Article  CAS  Google Scholar 

  27. Hakola H, Rinne J, Laurila T (1998): The hydrocarbon emission rates of Tea-Leafed Willow (Salix phylicifolia), Silver Birch (Betula pendula) and European Aspen (Populus tremula). Atmos Environ 32 (10) 1825–1833

    Article  CAS  Google Scholar 

  28. Hayward S, Tani A, Hewitt CN (2002): In-use performance characteristics of a proton transfer reaction-mass spectrometer for measuring volatile organic compounds. Environ Sci Technol 36, 1554–1560

    Article  CAS  Google Scholar 

  29. Hecke K, Tausz M, Havranek WM, Wieser G, Grill D (2003): Unterschiede in den antioxidativen Schutzstrategien verschiedener Koniferen nahe der Waldgrenze. In: Kohl J (ed), 15. Tagung des Österreichischen Arbeitskreises für Pflanzenphysiologie, Tagungsbericht (Zusammenfassung), Bundesamt und Forschungszentrum für Wald, Wien, S. 55

  30. Herman F, Smidt S (2004): Der österreichische Wald ist durch Luftschadstoffe gefährdet — Ein Beitrag zum Walddialog. Online-Publikationen, Bundesamt und Forschungszentrum für Wald (BFW), Wien þttp:www//bfw.ac.at/600/pdf/2232.pdf〉 (03.08.2004)

    Google Scholar 

  31. Hicks BB, Baldocchi DD, Meyers TP, Hosker JR, Matt DR (1987): A preliminary multiple resistance routine for deriving dry deposition velocities from measured quantities. Water Air Soil Pollut 36, 311–330

    Article  CAS  Google Scholar 

  32. Hill AC (1971): Vegetation: a sink for atmospheric pollutants. J Air Pollut Contam Assoc 21, 341–346

    CAS  Google Scholar 

  33. Hoffmann T, Odum JR, Bowman F, Collins D, Klockow D, Flagan R, Seinfeld J (1997): Formation of organic aerosols from the oxidation of biogenic hydrocarbons. J Atmos Sci 26, 189–222

    CAS  Google Scholar 

  34. Hole LR, Semb A, Torseth K (2004): Ozone deposition to a temperate coniferous forest in Norway. Atmos Environ 38, 〈doi:10.1016/j.atmosenv.2003.11.042

  35. Janson RW (1993): Monoterpene emissions from Scots pine and Norwegian spruce. J Geophys Res 98, 2839–2850

    Article  Google Scholar 

  36. Johansson C, Richter A, Granat L (1983): Dry deposition on coniferous forest of SO2 at ppb levels. In: Pruppacher HHR, Semonin RG, Slinn GWN (eds), Precipitation scavenging, dry deposition, and resuspension, S. 775–783, Elsevier, New York

    Google Scholar 

  37. Karl TG, Spirig C, Prevost P, Stroud C, Rinne J, Greenberg J, Fall R, Guenther A (2002): Virtual disjunct eddy covariance measurements of organic compound fluxes from a subalpine forest using proton transfer reaction mass spectrometry. Atmos Chem Phys Discuss 2, 999–1033

    Google Scholar 

  38. Karlsson PE, Uddling J, Braun S, Broadmeadow M, Elvira S, Gimeno BS, Le Thiec D, Oksanen E, Vandermeiren K, Wilkinson M, Emberson L (2004): New critical levels for ozone effects on young trees based on AOT40 and simulated cumulative leaf uptake of ozone. Atmos Environ 38, 2283–2294

    Article  CAS  Google Scholar 

  39. Karnosky DF, Mankovska B, Percy K, Dickson RE, Podila GK, Sober I, Noormets A, Hendrey G, Coleman MD, Kubiske M, Pregitzer KS, Isebrands JG (1999): Effects of tropospheric O3 on Trembling Aspen and interaction with CO2: Results from an O3-gradient and a FACE experiment. Water Air Soil Pollut 116, 311–322

    Article  CAS  Google Scholar 

  40. Kesselmeier J, Meixner F, Ammann C, Ausma S, Dindorf T, Kortner M, Kuhn U, Lehmann L, Marx O, Massold E, Schebeske G, Scheibe M, Seifert T, Spirig C, Thielmann A, Tritsch C, Weitz A (2002): Emission and Chemical Transformation of Biogenic Volatile Organic Compounds — Comparative studies of emissions of volatile organic compounds (VOCs) and nitrogen oxides (NOx) in and above vegetation stands. Max-Planck-Institut für Chemie Mainz, Max-Planck-Institut für Biogeochemie Jena, Eidgenössische Forschungsanstalt für Agrarökologie und Landbau Zürich, AFO 2000 Statusseminar, Schliersee, 7.–10. Oktober 2002, Poster, 〈http://www.fz-juelich.de/icg/icg-ii/ECHO/PUB ERGEBNISSE/Schliersee/MPI.pdf〉 (31. Juli 2004)

  41. Koppmann R, Bohn B, Brüning D, Folkers A, Henschke L, Hofzumahaus A, Holland F, Holzke C, Knaps A, Koch N, Komenda M, Mentel T, Mihelcic D, Möllmann-Coers M, Müsgen P, Opitz T, Rohrer F, Rongen H, Rupp L, Schaub A, Schlüter I, Siese M, Tillmann R, Wildt J (2002a): Emission and chemical transformation of biogenic volatile organic compounds — Investigation in and above a mixed forest stand. Forschungszentrum Jülich; AFO 2000 Statusseminar, Schliersee, 7.–10. Oktober 2002, Poster, 〈http://www.fz-juelich.de/icg/icg-ii/ECHO/PUB ERGEBNISSE/Schliersee/FZJ.pdf〉 (31. Juli 2004)

  42. Koppmann R, Kesselmeier J, Hoffmann T, Schatzmann M (2002b): Emission and chemical transformation of biogenic volatile organic ganic compoudss — Investigation in and above a mixed forest stand — an overview. Forschungszentrum Jülich, Max-Planck-Institut für Chemie Mainz, Institut für Spektrochemie und Angewandte Spektroskopie Dortmund, Meteorologisches Institut Universität Hamburg, AFO 2000 Statusseminat, Schliersee, 7.–10. Oktober 2002, Poster ≪http:/www.fz-juelich.de/icg/icg-ii/ECHO/ PUR ERGEBNISSE/Schliersee/Ueberblick.pdf≫ (31. Juli 2004)

  43. Kramm G, Dlugi R, Dollard GJ, Mölders N, Müller H, Seiler W, Sievering H (1995): On the dry deposition of ozone and reactive nitrogen compounds. Atmos Environ 29, 3209–3231

    Article  CAS  Google Scholar 

  44. Kurpius MR, Goldstein AH (2003): Gas-phase chemistry dominates O3 loss to a forest, implying a source of aerosols and hydroxyl radicals to the atmosphere. Geophys Res Lett 30 (7) 1371

    Article  CAS  Google Scholar 

  45. Lefohn AS (1997): A new ozone standard in the United States. Atmos Environ 31 (22) 3851–3852

    Article  CAS  Google Scholar 

  46. Lendzian KJ, Kerstiens G (1991): Sorption and transport of gases and vapors in plant cuticles. In: Ware GW (ed), Rev Environ Cont Toxicol 121, 65–128

  47. Lenschow DH, Pearson J Jr, Stankow BB (1982): Measurements of ozone vertical flux to ocean and forest. J Geophys Res 87, C11, 8833–8837

    Article  CAS  Google Scholar 

  48. Maier-Märker U (1998): Predisposition of trees to drought stress by ozone. Tree Physiol 19, 71–78

    Google Scholar 

  49. Massman WJ, Grantz DA (1995): Estimating canopy conductance to ozone uptake from observations of evapotranspiration at the canopy scale and the leaf scale. Global Change Biol 1, 183–198

    Article  Google Scholar 

  50. Matt DR, Womack JD (1988): Atmosphere-surface exchange of ozone to a spruce conifer forest: Measured and inferred, paper presented at Quadrennial Ozone Symposium, Göttingen, Germany, Aug. 8–13, 1988

  51. Matyssek R, Innes JL (1999): Onzone — a risk factor for trees and forests in Europe?. Water Air Soil Pollut 116, 199–226

    Article  CAS  Google Scholar 

  52. Matyssek R, Wieser G, Nunn AJ, Kozovits AR, Reiter IM, Heerdt C, Winkler JB, Baumgarten M, Häberle KH, Grams TEE, Werner H, Fabian P, Havranek WM (2004): Comparison between AOT40 and ozone uptake in forest trees of different species, age and site conditions. Atmos Environ 38, 2271–2281

    Article  CAS  Google Scholar 

  53. Menzel A (2000): Trends in phenological phases in Europe between 1951 and 1996. Int J Biometeorol 44, 76–81

    Article  CAS  Google Scholar 

  54. Mikkelsen TN, Ro-Poulsen H, Pilegaard K, Hovmand MF, Jensen NO, Christensen CS, Hummelshoj P (2000): Ozone uptake by an evergreen forest canopy: temporal variation and possible mechanisms. Environ Pollut 109, 423–429

    Article  CAS  Google Scholar 

  55. Mikkelsen TN, Ro-Poulsen H, Hovmand MF, Jensen NO, Pilegaard K, Egeloev AH (2004): Five-year measurements of ozone fluxes to a Danish Norway spruce canopy. Amos Environ 38, 2361–2371

    Article  CAS  Google Scholar 

  56. Miller PR, Parmeter JR, Taylor OC, Cardiff EA (1963): Ozone injury to the foliage of Pinus ponderosa. Phytopathol 53, 1072–1076

    CAS  Google Scholar 

  57. Miller PR, Millecan AA (1971): Extent of oxidant air pollution damage to some pines and other conifers in California. Plant Disease Reporter 55, 555–559

    Google Scholar 

  58. Miller PR, McBride JR (eds) (1999): Oxidant Air Pollution Impacts in the Montane Forests of Southern California. A Case Study of the San Bernardino Mountains. Springer Verlag, New York, 424 S.

    Google Scholar 

  59. Möller D (2003): Luft. Chemie, Physik, Biologie, Reinbaltung, Recht. Walter de Gruyter, Berlin, 750 S.

    Google Scholar 

  60. Monson RK (2002): Volatile Organic Compound Emissions from Terrestrial Ecosystems: A Primary Biological Control over Atmospheric Chemistry. Israel J Chem 42, 29–42

    Article  CAS  Google Scholar 

  61. Musselman RC, Massman WJ (1999): Ozone flux to vegetation and its relationship to plant response and ambient air quality standards. Atmos Environ 33, 65–73

    Article  CAS  Google Scholar 

  62. Musselman RC, Minnick TJ (2000): Nocturnal stomatal conductance and ambient air quality standards for ozone. Atmos Environ 34, 719–733

    Article  CAS  Google Scholar 

  63. Niemand C, Köstner B, Prasse H, Grünwald T, Bernhofer C (2003): Charakterisierung von Phänophasen und Vegetationsperiode im Tharandter Wald auf phänologischer und meteorologischer Datenbasis. In: Bernhofer C, Goldberg V (Hrsg), Tagungsband 5. BIOMET-Tagung, Tharandter Klimaprotokolle Band 9, Dresden, S. 164–166

  64. Novak K, Skelly JM, Schaub M, Kräuchi N, Hug C, Landolt W, Bleuler P (2003): Ozone air pollution and follar injury development on native plants of Switzerland. Environ Pollut 125, 41–52

    Article  CAS  Google Scholar 

  65. Nunn A, Reiter IM, Häberie KH, Werner H, Langebartels C, Sandermann H, Heerdt C, Fabian P, Matyssek R (2002): Free-air’ ozone canopy fumigation in an old-growth mixed forest: concept and observations in beech. Phyton 42 (3) 105–119

    CAS  Google Scholar 

  66. Panek JA, Goldstein AH (2001): Response of stomatal conductance to drought in ponderosa pine: implications for carbon and ozone uptake. Tree Physiol 21, 337–344

    CAS  Google Scholar 

  67. Parrish DD, Williams EJ, Fahey DW, Liu SC, Fehsenfeld FC (1987): Measurement of nitrogen oxide fluxes from soils: Intercomparison of enclosure and gradient measurement techniques. J Geophys Res 92 (2) 2165–2171

    Article  CAS  Google Scholar 

  68. Paulson SE, Chung M, Hasson A (1999): OH Radical Formation from the Gas-Phase Reaction of Ozone with Terminal Alkenes, and the Relationship between Structure and Mechanism. (Invited Feature Article). J Phys Chem 41, 8125–8138

    Google Scholar 

  69. Pilegaard K (2001): Air-soil exchange of NO, NO2 and O3 in forests. Water Air Soil Pollut Focus 1 (5-6) 79–88

    CAS  Google Scholar 

  70. Pilegaard K, Jensen NO, Hummelshoj P (1995): Deposition of nitrogen oxides and ozone to Danish forest sites. In: Heij GJ, Erisman JW (eds), Acid Rain Research: Do we have enough answers? Elsevier Science, S. 31–40

  71. Pleijel H, Danielsson H, Ojanperä K, De Temmerman L, Högy P, Badiani M, Karlsson PE (2004): Relationships between ozone exposure and yield loss in European wheat and potato — a comparison of concentration-and flux-based exposure indices. Atmos Environ 38, 2259–2269

    Article  CAS  Google Scholar 

  72. Pleim JE, Finkelstein PL, Clarke JF, Ellestad TG (1999): A technique for estimating dry deposition velocities based on similarity with latent heat flux. Atmos Environ 33, 2257–2268

    Article  CAS  Google Scholar 

  73. Rapp J (2000): Konzeption, Problematik und Ergebnisse klimatologischer Trendanalysen für Europa und Deutschland. DWD Bericht 212, Selbstverlag Offenbach

  74. Rapp J, Schönwiese CD (1995): Atlas der Niederschlags-und Temperaturtrends in Deutschland 1891 bis 1990. Frankfurter Geowiss Arb B (Meteorologie und Geophysik)

  75. Reiling K, Davison AW (1995): Effects of ozone on stomatal conductance and photosynthesis in populations of Plantago major L. New Phytologist 129, 587–594

    Article  CAS  Google Scholar 

  76. Rodhe H, Grennfelt P, Wisniewski J, Ågren C, Bengtsson G, Hultberg H, Johansson K, Kauppi P, Kucera V, Oskarsson H, Phihl Karisson G, Rasmussen L, Rosseland B, Schotte L, Seeden G, Thömelöf E (1995): Acid Reign ’95? — conference summary statement. Water Air Soil Pollut 85 (1) 1–14

    Article  CAS  Google Scholar 

  77. Rondón A, Johansson C, Granat L (1993): Dry Deposition of Nitrogen Dioxide and Ozone to Coniferous Forests. J Geophys Res 98, D3, 5159–5172

    Article  Google Scholar 

  78. Ro-Poulsen H, Mikkelsen TN, Hovmand MF, Hummelshooj P, Jensen NO (1998): Ozone deposition in relation to canopy physiology in a mixed conifer forest in Denmark. Chemosphere 36 (4-5) 669–674

    Article  CAS  Google Scholar 

  79. Sandermann H Jr (1996): Ozone and plant health. Annual Rev Phytopathol 34, 347–366

    Article  CAS  Google Scholar 

  80. Sandermann H Jr, Wellburn AR, Heath RL (1997): Forest decline and ozone: synopsis. In: Sandermann H, Wellburn AR, Heath RL (eds), Forest decline and ozone (A comparison of controlled chamber and field experiments) Ecol Studies 127, 369–377

  81. Schade GW, Goldstein AH (2003): Increase of monoterpene emissions from a pine plantation as a result of mechanical disturbances. Geophys Res Lett 30, 7, art. 1380

    Google Scholar 

  82. Schönwiese CD (2002): Beobachtete Klimatrends im Industriezeitalter. Ein Überblick globale/Europa/Deutschland. Bericht d Inst Meteorol Geophys Univ Frankfurt, S. 106

  83. Siefermann-Harms D, Boxler-Baldoma C, Wilpert KY, Heumann HG (2004): The rapid yellowing of spruce at a mountain site in the Central Black Forest (Germany). Combined effects of Mg deficiency and ozone on biochemical, physiological and structural properties of the chloroplasts. J Plant Physiol 161 (4) 423–437

    Article  CAS  Google Scholar 

  84. Simpson D, Tuovinen JP, Emberson L, Ashmore MR (2003): Characteristics of an ozone deposition module II: Sensitivity analysis. Water Air Soil Pollut 143, 123–137

    Article  CAS  Google Scholar 

  85. Skärby L, Troeng E, Boström CA (1987): Ozone uptake and effects on transpiration, net photosynthesis, and dark respiration in Scots pine. Forest Sci 33 (3) 801–808

    Google Scholar 

  86. Skelly JM, Davis DD, Merrill W, Cameron EA, Brown HD, Drummond DB, Dochinger LS (eds) (1987): Diagnosing injury to Eastern forest trees: a manual for identifying damage caused by air pollution, pathogens, insects, and abiotic stresses, National Acidic Precipitation Program, Forest Response Program, Vegetation Survey Research Cooperative. Univ Park, PA: Agricultural Information Services, College of Agriculture, Dept Plant Pathol, Pennsylvania State University, 122 S.

    Google Scholar 

  87. Smidt S, Herman F (2004): Evaluation of air pollution related risks for Austrian mountain forests. Environ Pollut 130, 99–112

    Article  CAS  Google Scholar 

  88. Spanke J, Rannik Ü, Forkel R, Nigge W, Hoffmann T (2001): Emission fluxes and atmospheric degradation of monoterpenes above a boreal forest: field measurements and modelling. Tellus 53B, 406–422

    CAS  Google Scholar 

  89. Taylor GE Jr, Hanson PJ (1992): Forest trees and tropospheric ozone: role of canopy deposition and leaf uptake in developing exposure-response relationships. Agciculture, Ecosystems Environ 42, 255–273

    Article  CAS  Google Scholar 

  90. Taylor GE, Tingey DT (1983): Sulfur dioxide flux into leaves of Geranium carolinianum L. Plant Physiol 72, 237–244

    Article  CAS  Google Scholar 

  91. Tegischer K, Tausz M, Wieser G, Grill D (2002): Tree-and needleage-dependent variations in antioxidants and photoprotective pigments in Norway spruce needles at the alpine timberline. Tree Physiol 22, 591–596

    CAS  Google Scholar 

  92. Then C, Wieser G (2003): Validation of the Ecological Significance of Former O3 Studies within CASIROZ: Defense Capacity and Age-related Differences in Beech Response to O3 In: Kohl J (ed), 15. Tagung des Österreichischen Arbeitskreises für Pflanzenphysiologie, Tagungsbericht (Zusammenfassung), Bundesant und Forschungszentrum für Wald, Wien, S. 112

    Google Scholar 

  93. Tuovinen JP (2000): Assessing vegetation exposure to ozone: properties of the AOT40 index and modifications by deposition modelling. Environ Pollut 109, 361–372

    Article  CAS  Google Scholar 

  94. Tuovinen JP, Simpson D, Mikkelsen TN, Emberson LD, Ashmore MR, Aurela M, Cambridge HM, Hovmand MF, Jensen NO, Laurila T, Pilegaard K, Ro-Poulsen H (2001): Comparisons of measured and modelled ozone deposition to forests in Northern Europe. Water Air Soil Pollut Focus 1 (1-6) 263–274

    CAS  Google Scholar 

  95. UN/ECE (2004). Mapping Critical Levels for Vegetation. Working Group on Effects, UN/ECE Economic Commission for Europe, Geneva, Switzerland

    Google Scholar 

  96. Utiyama M, Fukuyama T, Maruo YY, Ichino T, Izumi K, Hara H, Takano K, Suzuki H, Aoki M (2004): Formation and deposition of ozone in a Red Pine forest. Water Air Soil Pollut 151, 53–70

    Article  CAS  Google Scholar 

  97. van Dijk SM, Duyzer JH (1999): Nitric oxide emissions from forest soils in the Netherlands. J Geophys Res 104, D13, 15955–15961

    Article  Google Scholar 

  98. Volz A, Kley D (1988): Ozone measurements in the 19th Century: an evaluation of the Montsouris series. Nature 332, 240–242

    Article  CAS  Google Scholar 

  99. Walton S, Gallagher MW, Duyzer JH (1997): Use of a detailed model to study the exchange of NOx and O3 above and below a deciduous canopy. Atmos Eviron 31 (18) 2915–2931

    Article  CAS  Google Scholar 

  100. Wang D, Hinckley TM, Cumming AB, Braatne J (1995): A comparison of measured and modelled ozone uptake into plant leaves. Environ Pollut 89 (3) 247–254

    Article  CAS  Google Scholar 

  101. Wesely ML (1981): Summary of some recent measurements of ozone removal rates at the surface of the Earth. Proc Quadrenn Int Ozone Symp 1, 471–477

    CAS  Google Scholar 

  102. Wesely ML (1989): Parameterization of surface resistances to gaseous dry deposition in regional-scale numerical models. Atmos Environ 23, 1293–1304

    Article  CAS  Google Scholar 

  103. Wesely ML, Eastman DR, Cook DR, Hicks BB (1978): Daytime variations of ozone eddy fluxes to maize. Boundary-Layer Meteorol 15, 361–373

    Article  Google Scholar 

  104. Wieser G, Häsler R, Götz B, Koch W, Havranek WM (2000): Role of climate, crown position, tree age and calculated ozone flux into needles of Picea abies and Pinus cembra: a synthesis. Environ Pollut 109, 415–422

    Article  CAS  Google Scholar 

  105. Wieser G, Tegischer K, Tausz M, Häberle KH, Thorsten E, Grams E, Matyssek R (2002a): Age effects on Norway spruce (Picea abies) susceptibility to ozone uptake: a novel approach relating stress avoidance to defense. Tree Physiol 22, 583–590

    Google Scholar 

  106. Wieser G, Hecke K, Tausz M, Häberle KH, Grams TEE, Matyssek R (2002b): The role of Antioxidative Defense in Determining Ozone Sensitivity of Norway Spruce (Picea abies (L.) Karst.) Across Tree Age: Implications for the Sun-and Shade-Crown. Phyton (Austria) — Special issue: ‘Global change’ 42 (3) 245–253

    CAS  Google Scholar 

  107. Wieser G, Havranek WM (1993): Ozone uptake in the sun and shade crown of spruce: quantifying the physiological effects of ozone exposure. Trees 7, 227–232

    Article  Google Scholar 

  108. Wieser G, Havranek WM (1995): Environmental control of ozone uptake in Larix decidua Mill.: a comparison between different altitudes. Tree Physiol 15, 253–258

    CAS  Google Scholar 

  109. Wildt J, Kley D, Rockel A, Rockel P, Segschneider HJ (1997): Emission of NO from several higher plant species. J Geophys Res 102, 5919–5927

    Article  CAS  Google Scholar 

  110. Zechmann B, Zellnig G, Müller M (2003): Methoden zur Lokalisierung und Quantifizierung von Glutathion in pflanzlichen Zellen. In: Kohl J (ed), 15. Tagung des Österreichischen Arbeitskreises für Pflanzenphysiologie, Tagungsbericht (Zusammenfassung), Bundesamt und Forschungszentrum für Wald, Wien, S. 126

    Google Scholar 

  111. Zeller K (2002): Summer and autumn ozone fluxes to a forest in the Czech Republic Brdy Mountains. Environ Pollut 119, 269–278

    Article  CAS  Google Scholar 

  112. Zeller KF, Nikolov NT (2000): Quantifying simultaneous fluxes of ozone, carbon dioxide and water vapor above a subalpine forest ecosystem. Environ Pollut 107, 1–20

    Article  CAS  Google Scholar 

  113. Zhang L, Moran M, Makar P, Brook J, Gong S (2002): Modelling Gaseous Dry Deposition in AURAMS A Unified Regional Airquality Modelling System. Atmos Environ 36, 537–560

    Article  CAS  Google Scholar 

  114. Zhang L, Brook JR, Vet R (2003): A revised parameterization for gaseous dry deposition in air-quality model. Atmos Chem Phys 3, 2067–2082

    CAS  Article  Google Scholar 

  115. Zimmermann F, Lux H, Maenhaut W, Matschullat J, Plessow K, Reuter F, Wienhaus O (2003): A review of air pollution and atmospheric deposition dynamics in southern Saxony, Germany, Central Europe. Atmos Environ 37, 671–691

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Katrin Palitzsch.

Additional information

OnlineFirst: 16. Dezember 2004

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Palitzsch, K., Göllner, S., Lupa, K. et al. Ozon in Waldökosystemen aus atmosphärenchemischer und pflanzenphysiologischer Sicht. UWSF - Z Umweltchem Ökotox 17, 231–241 (2005). https://doi.org/10.1065/uwsf2004.12.091

Download citation

Schlagwörter

  • BVOC (biogene flüchtige Kohlenwasserstoffe
  • Kronenraumprozesse
  • Modelle
  • Ozon
  • Qualitätsstandards (AOT40, CUO, SUM60)
  • Stomata
  • Terpene
  • Waldökosysteme

Keywords

  • BVOC (biogenic volatile hydrocarbons)
  • canopy processes
  • forest ecosystems
  • models
  • ozone
  • quality standards (AOT40, CUO, SUM60)
  • stomata
  • terpenes