Skip to main content

Advertisement

Log in

The influence of different land uses on mineralogical and chemical composition and horizonation of urban soil profiles in Qingdao, China

  • Urban Soils (Subject Editor: Stefan Norra)
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Background, Aims and Scope

Urban soils are important sinks and sources of pollutants. Furthermore, urban soils are often much more heterogeneous than natural, agricultural or forest soils. This is due to the highly diverse land uses occurring in small distances. Different land uses specifically affect the mineralogical and chemical composition of urban soils causing various, often negative impacts on the environment. Therefore, sustainable urban development has to be based on comprehensive knowledge on the urban ‘basis’ of life: the soils. Till today, knowledge on urban soil is generally limited and more often linked to environmental assessments than to soil profiles and their genesis. During the last decades, some studies were carried out in the so-called developed countries, but little is known about the genesis and pollution of Chinese urban soils. Therefore, in April 2004, a soil survey was carried out to investigate land use-related influences on soil formation at Qingdao.

Materials and Methods

Five locations were chosen for detailed pedological, mineralogical and geochemical investigations. These five locations represent anthropogenic impacts of different land uses and comprise one natural soil, one soil from an industrial site, two soils from the city center and of different ages, and one soil from an abandoned construction site.

Results

The soils investigated showed various impacts of anthropogenic activities. Whilst natural soil just showed signs of diffuse pollution by some atmospheric inputs of heavy metals, peculiar impacts of construction activities, construction waste and coal disposal were identified in cases of the urban soils investigated. Thin layers of technical materials (lime, coal) divided two older, inner urban soil profiles into geogenic and anthropogenic sections. Both of the soils showed elevated concentrations of Cu, Zn and Pb owing to admixtures of construction rubble and coal particles. Furthermore, it was found out that Ba is a fairly good indicator for the pollution of soil horizons by other heavy metals.

Discussion

The impact of construction activities especially could be identified by two features: (i) The pedological description identified upper soil layers, which were filled with artificial materials or mixtures of excavated soil and artificial materials. (ii) Elevated concentrations of Ca and calcite and higher pH values characterized soil horizons influenced by human activities since the natural soil has developed from granitic rock. A typical feature of Qingdao urban soils is the missing of the natural Ah horizon. Instead of this horizon, several horizons comprising various technogenic materials were filled on top of the parent rocks or natural B horizons. Expandable phyllo-silicates and interstratified clay minerals naturally indicate weathering processes and they consequently were found in the geogenic soil horizons. Considerable amounts of phyllo-silicates were also found in the anthropogenic horizons contributing to a potential lower mobility of pollutants.

Conclusions

The geogenic parent materials in Qingdao are granitic rocks and sediments of those rocks. Thus, the natural soil investigated is an Endoleptic Cambisol, whereas the inner urban soil and the industrial soil are Urbic Technosols. Qingdao urban soils are intensively disturbed and contain considerable amounts of construction waste and frequently coal particles. Construction activities are the most destructive impacts on the Qingdao soils investigated. The oldest soils are most heavily contaminated, but pH values often between 7 and 8 indicate low mobilities of heavy metals. Atmospheric pollution is superimposing soil pollution caused by the fillings.

Recommendations and Perspectives

The implementation of a construction and building waste management preventing uncontrolled spreading of building rubble would be necessary to protect soils from pollution and would be a useful contribution to a sustainable urban development. Since the state of knowledge on Chinese urban soils is limited, much more intensive research is necessary to develop a comprehensive understanding of the dynamics of Chinese urban soils with respect to genesis, composition, pollution and future development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • AEEC (1985): Atlas of Endemic Diseases and Their Environments in the Peoples Republic of China, Science Press, 216 pp

  • AK Stadtböden (1996): Urbaner Bodenschutz. Springer, Berlin, 244 pp

    Google Scholar 

  • Bityukova L, Shogenova A, Birke M (2000): Urban Geochemistry: A Study of Element Distributions in the Soils of Tallinn (Estonia). Env Geochem Health 22(2) 173–193

    Article  CAS  Google Scholar 

  • Bloemen M-L, Markert B, Lieth H (1995): The distribution of Cd, Cu, Pb and Zn in topsoils of Osnabrück in relation to land use. The Science of the Total Environment 166, 137–148

    Article  CAS  Google Scholar 

  • Blume HP (1993): Böden. In: Sukopp H, Wittig R (eds), Stadtökologie. Gustav Fischer Verlag, Stuttgart, pp 154–171

    Google Scholar 

  • Blume HP, Brümmer GW, Schwertmann U, Horn R, Kögel-Knabner I, Stahr K, Auerswald K, Beyer L, Hartmann A, Litz N, Scheinost A, Stanjek H, Welp G, Wilke BM (2002): Lehrbuch der Bodenkunde. Spektrum, Heidelberg, 593 pp

    Google Scholar 

  • Blume HP, Schleuß U (eds) (1997): Bewertung anthropogener Stadtböden. Schriftenreihe des Institutes für Pflanzenernährung und Bodenkunde 38, Universität Kiel, 346 pp

  • Bullock P, Gregory PJ (eds) (1991): Soils in the Urban Environment. Blackwell Scientific Publications, Oxford, 174 pp

    Google Scholar 

  • Driessen P, Deckers J, Spaargaren O, Nachtergaele F (2001): Lecture notes on the major soils of the world. World Soil Resources Reports 94. FAO, Rome

    Google Scholar 

  • FAO (2006a): World reference base for soil resources 2006. World Soil Resources Reports 103. FAO, Rome

    Google Scholar 

  • FAO (2006b): Guidelines for soil description. 4th Ed. FAO, Rome

    Google Scholar 

  • Heinrichs H (1993): Die Wirkung von Aerosolkomponenten auf Böden und Gewässer industrieferner Standorte: eine geochemische Bilanzierung. Postdoctoral Lecture Qualification, Göttingen University, Göttingen

    Google Scholar 

  • Helmes T (2004): Urbane Böden. Doctoral Thesis. University of Saarland, Saarbrücken

    Google Scholar 

  • Hildemann LM, Markowski GR, Cass GR (1991): Chemical composition of emissions from urban sources of fine organic aerosol. Environ Sci Technol 25, 744–759

    Article  CAS  Google Scholar 

  • Hiller DA, Meuser H (1998): Urbane Böden. Springer Berlin, 161 pp

  • Holland D (1996): Stadtböden im Keuperland am Beispiel Stuttgarts. Hohenheimer Bodenkundliche Hefte 39, Stuttgart

  • Hooker PJ, Nathanail CP (2006): Risk-based charcterisation of lead in urban soils. Chem Geol 226, 340–351

    Article  CAS  Google Scholar 

  • Jenkins R, Gould RW, Gedcke D (1981): Quantitative X-Ray Spectrometry. Marcel Dekker, New York, 586 pp

    Google Scholar 

  • Jim CY (1998): Soil Characteristics and Management in an Urban Park in Hong Kong. Environmental Management 22(5) 683–695

    Article  Google Scholar 

  • Kabata-Pendias A (2001): Trace Elements in Soils and Plants. CRC Press LLC, Boca Raton, 413 pp

    Google Scholar 

  • Kramar U (1993): Methoden zur Interpretation von daten der geochemischen Bachsedimentprospektion am Beispiel der Sierra de San Carlos/Tamaulipas Mexico. Karlsruher Geochemische Hefte 1, Karlsruhe University, Karlsruhe, 149 pp

    Google Scholar 

  • Kramar U (1997): Advances in energy-dispersive X-ray fluorescence. J Geochem Explor 58, 73–80

    Article  CAS  Google Scholar 

  • Kramar U (1999): X-Ray Flourescence Spectrometers. In: Lindon JC, Tranter GE, Holmes JL (eds), Encyclopedia of Spectroscopy and Spectrometry. Academia Press, San Diego, pp 2467–2477

    Google Scholar 

  • Krauskopf BK, Bird DK (1995): Introduction to Geochemistry. McGraw-Hill, New York, 647 pp

    Google Scholar 

  • Kuang C, Neumann T, Norra S, Stüben D (2004): Land Use-related Chemical Composition of Street Sediments in Beijing. Env Sci Pollut Res 11(2) 73–83

    CAS  Google Scholar 

  • Kuntze H, Roeschmann G, Schwerdtfeger G (1994): Bodenkunde. Ulmer, Stuttgart, 424 pp

    Google Scholar 

  • Lachance GR, Claisse F (1995): Quantitative X-ray Flourescence Analysis. Wiley, New York, 402 pp

    Google Scholar 

  • Lee CS-l, Li X, Shi W, Cheung SC-n, Thornton I (2006): Metal contamination in urban, suburban, and country park soils of Hong Kong: A study based on GIS and multivariate statistics. Science of the Total Environment 356, 45–61

    Article  CAS  Google Scholar 

  • Lehmann A, Stahr K (2007): Nature and Significance of Anthropogenic Urban Soils. J Soils Sediments 7(4) 247–260

    Article  CAS  Google Scholar 

  • Li X, Poon C-s, Liu PS (2001): Heavy metal contamination of urban soils and street dusts in Hong Kong. Appl Geochem 16, 1361–1368

    Article  CAS  Google Scholar 

  • MacEwan DMC, Ruiz-Amil A (1975): Interstratified Clay Minerals. In: Gieseking JE (ed), Soil Components. Berlin, Springer, pp 265–334

    Google Scholar 

  • Markus JA, McBratney AB (1996): An urban soil study: Heavy metals in Glebe, Australia. Aust J Soil Res 34, 453–465

    Article  CAS  Google Scholar 

  • Merian E (1991): Metals and their Compounds in the Environment. VCH, Weinheim, 1438 pp

    Google Scholar 

  • Mesilio L, Farago ME, Thorton I (2001): Reconnaissance soil geochemical survey of Gibraltar. Env Geochem Health 25, 1–8

    Article  Google Scholar 

  • Möller A, Müller HW, Abdullah A, Abdelgawas G, Utermann J (2005): Urban soil pollution in Damascus, Syria: Concentrations and patterns of heavy metals in the soils of the Damascus Ghouta. Geoderma 124, 63–71

    Article  CAS  Google Scholar 

  • Norra (2001): Umweltgeochemische Signale urbaner Systeme am Beispiel von Böden, Pflanzen und Stäuben in Karlsruhe. Karlsruher Mineralogische und Geochemische Hefte 18, Karlsruhe University, Karlsruhe, 296 pp

    Google Scholar 

  • Norra S, Weber A, Kramar U, Stüben D (2001): Mapping of Trace Metals in Urban Soils. J Soils Sediments 1(2) 77–97

    Article  CAS  Google Scholar 

  • Norra S, Stüben D (2003): Urban Soils. J Soils Sediments 3(4), 230–233

    Google Scholar 

  • Norra S, Lanka-Panditha M, Kramar U, Stüben D (2006): Mineralogical and geochemical patterns of urban surface soils, the example of Pforzheim, Germany. Appl Geochem 21, 2064–2081

    Article  CAS  Google Scholar 

  • Nriagu JO, Pacyna JM (1988): Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature 333, 134–139

    Article  CAS  Google Scholar 

  • Reimann C, Caritat Pd (1998): Chemical Elements in the Environment. Springer Berlin, 398 pp

  • Rößler HJ (1991): Lehrbuch der Mineralogie. Deutscher Verlag für Grundstoffindustrie, Leipzig, 844 pp

    Google Scholar 

  • Rossiter DG (2007): Classification of urban and industrial soils in the World Reference Base for Soil Resources (WRB). J Soils Sediments 7(2) 96–100

    Article  CAS  Google Scholar 

  • Schachtschabel P, Blume H-P, Brümmer G, Hartge K.H, Schwertmann U (1989): Lehrbuch der Bodenkunde. Ferdinand Enke Verlag, Stuttgart.

    Google Scholar 

  • Stüben D, Kramar U, Harting M, Stinnesbeck W, Keller G (2005): High-resolution geochemical record of Cretaceous-Tertiary boundary sections in Mexico: New constraints on the K/T and Chicxulub events. Geochimica et Cosmochimica 69(10) 2559–2579

    Article  CAS  Google Scholar 

  • Sukopp H (ed) (1990): Stadtökologie, Das Beispiel Berlin. Dietrich Reimer Verlag, Berlin, 455 pp

    Google Scholar 

  • Swertka A (2002): A Guide to the Elements. Oxford, New York, 247 pp

  • Wang J, Ren H, Zhang X (2006): Distribution patterns of lead in urban soil and dust in Shenyang city, Northeast China. Environmental Geochemistry and Health 28, 53–59

    Article  CAS  Google Scholar 

  • Wedepohl KH (1970): Lead. In: Wedepohl KH (ed), Handbook of Geochemistry II-5. Springer, Berlin

    Google Scholar 

  • Wedepohl KH (1972): Copper. In: Wedepohl KH (ed), Handbook of Geochemistry II-3. Springer, Berlin

    Google Scholar 

  • Zech W, Hintermaier-Erhard G (2002): Böden der Welt. Spektrum Akademischer Verlag, Heidelberg, 120 pp

    Google Scholar 

  • Zelazny LW, White GN (1989): The Pyrophyillite-Talc Group. In: Dixon JB, Weed SB (eds): Minerals in soil environment. Soil Science Society of America, Madison, pp 527–550

    Google Scholar 

  • Zhang G-L, Yang, F-G, Zhao Y-G, Zhao W-J, Yang J-L, Gong, Z-T (2005): Historical change of heavy metals in urban soils of Nanjing, China during the past 20 centuries. Environment International 31, 913–919

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Norra.

Additional information

ESS-Submission Editor: Dr. Kay Hamer (khamer@uni-bremen.de)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Norra, S., Fjer, N., Li, F. et al. The influence of different land uses on mineralogical and chemical composition and horizonation of urban soil profiles in Qingdao, China. J Soils Sediments 8, 4–16 (2008). https://doi.org/10.1065/jss2007.08.250

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1065/jss2007.08.250

Keywords

Navigation