Journal of Soils and Sediments

, Volume 7, Issue 5, pp 342–349 | Cite as

Application of a new sediment contact test with Myriophyllum aquaticum and of the aquatic Lemna test to assess the sediment quality of Lake Skadar

  • Danijela Stesevic
  • Ute Feiler
  • Danijela Sundic
  • Slavoljub Mijovic
  • Lothar Erdinger
  • Thomas-Benjamin Seiler
  • Peter Heininger
  • Henner Hollert
Research Article Sediment Linkages Between the River Catchment and the Sea


Goal, Scope and Background

Situated in the transboundary belt between Montenegro and Albania, Lake Skadar is the largest freshwater reservoir in Southeastern Europe. Because of the wide range of endemic, rare or endangered plant and animal species it supports, Lake Skadar and its extensive adjacent wetlands are internationally recognised as a site of significance and importance (Ramsar site). Within the last 10 to 20 years, Lake Skadar was exposed to intensive pollution. For the assessment of the ecotoxic load of the sediments sampled in Lake Skadar, a triad approach was recently applied. Overall, a complex spectrum of ecotoxic loads was elucidated. The aim of the present study was to use plant-based bioassays for assessing the sediment quality of Lake Skadar in order to facilitate and complement the triad test battery. The newly developed sediment contact test with Myriophyllum aquaticum and the aquatic growth inhibition test with Lemna minor were applied to native sediments and pore water, respectively, allowing the investigation of different toxicity-effects caused by particle-bound pollutants as well as pollutants in the interstitial water. This investigation is the first application of the novel sediment contact test with Myriophyllum aquaticum to lake sediments.


Sediment samples were taken from nine selected sites at Lake Skadar and investigated by the sediment contact assay with Myriophyllum aquaticum. The pore water was extracted from these sediment samples to be analysed in the aquatic growth inhibition test with Lemna minor. The results of the sediment contact tests were compared with each other and with those of the aquatic growth inhibition test.

Results and Discussion

Both applied macrophyte biotests revealed distinct changes in the growth behaviour of the two macrophytes subsequent to the exposure to the investigated natural sediments of Lake Skadar. The Myriophyllum sediment contact test revealed significant toxicity in the sediment samples from Radus and Kamenik, whereas the aquatic Lemna test showed inhibition effects for the samples from Sterbeq, Plavnica and Kamice. Data obtained with the newly developed Danio rerio contact test and the Arthrobacter globiformis contact test confirmed the Myriophyllum results.

Analyses of the heavy metal content in the sediments revealed low or moderate contamination levels. Correlation analyses between the content of heavy metals in the sediments and growth inhibition of Myriophyllum aquaticum showed a significant correlation between Cr concentrations and growth inhibition. Comparable findings are available for a German river system. In contrast, no significant correlation between inhibition rates and concentration of metals could be observed with Lemna minor.


It was shown that the newly developed sediment contact test with Myriophyllum aquaticum is applicable to lake sediments. In both the sediment contact test with Myriophyllum aquaticum on whole sediments and the aquatic growth inhibition test with Lemna minor on pore water, plant growth was influenced by the natural sediments and its components. Therefore, both test systems were found to be suitable for the detection of phytotoxic effects upon exposure to sediments. Myriophyllum aquaticum as test organism of the contact test grows directly in the sediment without an additional water-layer. Thus, it is able to detect toxicity caused by particle-bound phytotoxic substances as well as pore water-related contamination, while the floating Lemna minor can only detect effects emanating from pore water. Significant differences of the results were observed between these two test systems and, accordingly, the two different exposure scenarios. Hence, none of the tests can replace the other one and, as a consequence, both should be included into a test battery for the assessment of sediment toxicity.

Recommendations and Perspectives

Both plant assays were shown to be reliable tools for the evaluation of the eco-toxicological risk potentials of pore water and solid-phase sediment. They should become a complement to the standardised test battery generally used for comprehensive hazard assessment.


Bioassays Lake Skadar Lemna minor macrophytes Myriophyllum aquaticum native sediments pore water sediment contact test sediment toxicity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahlf W, Braunbeck T, Heise S, Hollert H (2002a): Sediment and Soil Quality Criteria. In: Burton F, McKelvie I, Förstner U, Guenther A (eds), Environmental Monitoring Handbook, McGraw-Hill, pp 17.1–17.18Google Scholar
  2. Ahlf W, Hollert H, Neumann-Hensel H, Ricking M (2002b): A Guidance for the Assessment and Evaluation of Sediment Quality: A German Approach Based on Ecotoxicological and Chemical Measurements. J Soils Sediments 2, 37–42Google Scholar
  3. Ahlf W (2007): Comments on the article ‘Optimisation of the Solid-Contact Test with Arthrobacter globiformis’ J Soils Sediments 7, 67CrossRefGoogle Scholar
  4. ARGE Elbe (1996): Arbeitsgemeinschaft für die Reinhaltung der Elbe: Umgang mit belastetem Baggergut an der Elbe — Zustand und EmpfehlungenGoogle Scholar
  5. Biselli S, Reineke N, Heinzel N, Kammann U, Franke S, Huhnerfuss H, Theobald N (2005): Bioassay-directed fractionation of organic extracts of marine surface sediments from the North and Baltic Sea, Part I: Determination and identification of organic pollutants. J Soils Sediments 5, 171–181CrossRefGoogle Scholar
  6. Brack W, Schirmer K, Erdinger L, Hollert H (2005a): Effect-directed analysis of mutagens and ethoxyresorufin-O-deethylase inducers in aquatic sediments. Environ Toxicol Chem 24, 2445–2458CrossRefGoogle Scholar
  7. Brack W et al. (2005b): MODELKEY — Models for assessing and forecasting the impact of environmental key pollutants on freshwater and marine ecosystems and biodiversity. Env Sci Pollut Res 12, 252–256CrossRefGoogle Scholar
  8. Brack W, Klamer HJC, deAlda ML, Barceló D (2007): Effect-Directed Analysis of Key Toxicants in European River Basins. A Review. Env Sci Pollut Res 14, 30–38CrossRefGoogle Scholar
  9. Brils J (2002): The SedNet Mission. J Soils Sediments 2(1) 2–3Google Scholar
  10. Burton GA (1992): Plankton, macrophyte, fish, and amphibian toxicity testing of freshwater sediments. In: Burton GA (eds), Sediment toxicity assessment, Lewis Publishers, pp 167–182Google Scholar
  11. Chapman PM (2000): The Sediment Quality Triad: then, now and tomorrow. Int J Environ Poll 13, 351–356CrossRefGoogle Scholar
  12. Chapman PM, Wang FY, Germano JD, Batley G (2002): Pore water testing and analysis: the good, the bad, and the ugly. Mar Poll Bull 44, 359–366CrossRefGoogle Scholar
  13. Chapman PM, Hollert H (2006): Should the sediment quality triad become a tetrad, a pentad, or possibly even a hexad? J Soils Sediments 6, 4–8CrossRefGoogle Scholar
  14. Claus E, Heininger P, Pfitzner S (2000): Beispiele der Sedimentbewertung an der Elbe: Schadstoffbelastung und ökotoxische Wirkung. In: Sedimentbewertung in europäischen Flussgebieten. Beiträge zum internationalen Symposium, April 1999, BfG-Mitteilung Nr. 22, 117–123Google Scholar
  15. Claus E, Tippmann P, Heininger P (2002): Anwendung differenzierter Untersuchungsmethoden zur Sedimentbewertung. UWSF — Z Umweltchem Ökotox 14, 3–7Google Scholar
  16. DIN EN ISO 20079 (2006) Water quality-Determination of the toxic effect of water constituents and waste water to duckweed (Lemna minor) — Duckweed growth inhibition testGoogle Scholar
  17. DIN 38412 L16 (1985) Bestimmung des Chlorophyll-a-Gehaltes von Oberflächenwasser (L16) Testverfahren mit Wasserorganismen (Gruppe L)Google Scholar
  18. DIN 38412 L48 (2002) Arthrobacter globiformis — Kontakttest für kontaminierte Feststoffe (L48), Testverfahren mit Wasserorganismen (Gruppe L)Google Scholar
  19. Djukic N, Maletin S, Miljanovic B (1993): Oligochaeta community as indicator of eutrofication in lower stream of river Tisza, Tiscia 27, 49–52, SzegedGoogle Scholar
  20. Djukic N, Miljanovic B, Maletin S, Ivanc A, Zhenjun S (1996): Water quality of the river Danube in Yugoslavia, evaluated from the oligochaete community. Arch Hydrobiol, Suppl 113, Large Rivers 10, 523–527, StuttgartGoogle Scholar
  21. Djurašković P, Vulović LJ, Tomić N (1997): Survey of Skadar Lake Water Quality assessment within the time period 1987–1994. CANU, Scientific Meeting, 44, 475–484, PodgoricaGoogle Scholar
  22. EU-WFD (2000): European Union Water Framework Directive 2000/60/EG of the European Parliament, Journal of the European CommunityGoogle Scholar
  23. Fairchild JF, Ruessler DS, Carlson AR (1998): Comparative sensitivity of five species of macrophytes and six species of algae to atrazine, metribuzin, alachor, and metolachlor. Environ Toxicol Chem 17, 1830–1834CrossRefGoogle Scholar
  24. Feiler U, Krebs F (1999): Entwicklung und Anwendung pflanzlicher, Biotestverfahren für ökotoxikologische Sedimentuntersuchungen. In: Oehlmann J, Markert B (eds), Ökotoxikologie — Ökosystemare Ansätze und Methoden. ecomed, Landsberg, pp 436–443Google Scholar
  25. Feiler U, Krebs F (2001): Entwicklung und Anwendung pflanzlicher Biotestverfahren für ökotoxikologische Untersuchungen von Gewässersedimenten, BfG-1336, German Federal Institute of Hydrology (BfG), KoblenzGoogle Scholar
  26. Feiler U, Claus E, Heininger P (2002): Der Einsatz von Pflanzentests bei der Sedimentbewertung, UWSF — Z Umweltchem Ökotox 14, 8–11Google Scholar
  27. Feiler U, Kirchesch I, Heininger P (2004): A New Plant-based Bioassay for Aquatic Sediments. J Soils Sediments 4, 261–266Google Scholar
  28. Feiler U, Ahlf W, Höss S, Hollert H, Neumann-Hensel H, Meller M, Weber J, Heininger P (2005): The SeKT Joint Research Project: Definition of reference conditions, control sediments and toxicity thresholds for limnic sediment contact tests. Env Sci Pollut Res 12, 257–258CrossRefGoogle Scholar
  29. Feiler U, Pelzer J, Heininger P (2006a) Entwicklung und Erprobung eines Sedimentkontakttests mit höheren Pflanzen zur Beurteilung der Gewässerqualität, BfG-1491, German Federal Institute of Hydrology (BfG), KoblenzGoogle Scholar
  30. Feiler U, Krebs F, Heininger P (2006b) Aquatic plant bioassays used in the assessment of water quality in German rivers, Hydrobiologia 570(1) 67–71CrossRefGoogle Scholar
  31. Filipovic S (1981): Effects of pollution on Lake Skadar and its most important tributaries, The Biota of Skadar Lake 97–108, TitogradGoogle Scholar
  32. Filipovic S (1983): Mikroelementi u vodama i nekim organizmima Skadarskog jezera i njegovim pritokama. Hemijski fakultet, PMF-a, Univerzitet u Beogradu, doktorska disertacija, pp 1–168Google Scholar
  33. Filipovic S (1997): Estimation of pollution sources in the aluminium combine, through some components of subterranean waters in immediate environment, CANU, Scientific Meeting, vol. 44, 341–354, PodgoricaGoogle Scholar
  34. Filipovic S (2002): Effects of pollution on Skadar Lake and its most important tributaries. The Shkodra/Skadar Lake project: Conference report 2000, pp 9–20Google Scholar
  35. Filipovic S, Topalovic A, Zejnilovic R, Mijovic S, Puric M, Vukovic Z, Gajevic D (2002): Physical-Chemical Investigations of the Lake, Conference Report on The Shkodra/Skadar Lake Project, HeidelbergGoogle Scholar
  36. HABAB-WSV (2000) Handlungsanweisungen für den Umgang mit Baggergut im Binnenland, BfG-1251, KoblenzGoogle Scholar
  37. Förstner U. (2004) Sediments — Resource or waste? J Soils Sediments 4(1) 3Google Scholar
  38. Harkey GA, Landrum PF, Klaine SJ (1994): Comparison of Whole-Sediment, Elutriate and Pore-Water Exposures for Use in Assessing Sediment-Associated Organic Contaminants in Bioassays. Environ Toxicol Chem 13(8) 1315–1329CrossRefGoogle Scholar
  39. Heise S, Ahlf W (2002): The Need for New Concepts in Risk Management of Sediments: Historical Developments: Future Perspectives and New Approaches. J Soils Sediments 2, 4–8CrossRefGoogle Scholar
  40. Heise S, Ahlf W (2005): A new microbial contact assay for marine sediments — Dedicated to Prof. Dr. Ulrich Forstner on his 65th birthday. J Soils Sediments 5, 9–15CrossRefGoogle Scholar
  41. Hollert H, Keiter S, König N, Rudolf M, Ulrich M, Braunbeck T (2003): A New Sediment Contact Assay to Assess Particle-bound Pollutants Using Zebrafish (Danio rerio) Embryos. J Soils Sediments 3, 197–207Google Scholar
  42. Hollert H, Braun B, Mijovic S, Rakaj M, Rastall A, Seiler T-b, Erdinger L (2004): The EULIMNOS project: Strengthening Cross-border Scientific Research and Higher Education in the Lake Shkodra/Skadar Region through a multidisciplinary Transboundary Approach to Conservation. Env Sci Pollut Res 11, 135Google Scholar
  43. Hollert H, Durr M, Holtey-Weber R, Islinger M, Brack W, Farber H, Erdinger L, Braunbeck T (2005): Endocrine disruption of water and sediment extracts in a non-radioactive dot blot/RNAse protection-assay using isolated hepatocytes of rainbow trout — Deficiencies between bioanalytical effectiveness and chemically determined concentrations and how to explain them. Env Sci Pollut Res 12, 347–360CrossRefGoogle Scholar
  44. Kammenga JE, Van Koert PHG, Riksen JAG, Korthals GW, Bakker J (1996): A toxicity test in artificial soil based on the life-history strategy of the nemadode Plectus acuminatus. Environ Toxicol Chem 15(5) 722–727CrossRefGoogle Scholar
  45. Kammann U, Biselli S, Reineke N, Wosniok W, Danischewski D, Huehnerfuss H, Kinder A, Sierts-Herrmann A, Theobald N, Vahl H-H, Vobach M, Westendorf J, Steinhart H (2005): Bioassay-directed fractionation of organic extracts of marine surface sediments from the North and Baltic Sea — Part II: Results of the biotest battery and development of a biotest index. J Soils Sediments 5, 225–232CrossRefGoogle Scholar
  46. Kansanen PH, Paasivirta I, Vayrynen T (1990): Ordination analysis and bioindices based on zoobenthos communities used to assess pollution of lake in southern Finland. Hydrobiologia 202, 153–170CrossRefGoogle Scholar
  47. Keiter S, Rastall A, Kosmehl T, Erdinger L, Braunbeck T, Hollert H (2006): Ecotoxicological assessment of sediment, suspended matter and water samples in the upper Danube river. A pilot study in search for the causes for the decline of fish catches. Env Sci Pollut Res 13, 308–319CrossRefGoogle Scholar
  48. Kostanjsek R, Lapanje A, Drobne D, Perovic S, Perovic A, Zidar P, Strus J, Hollert H, Karaman G (2005): Bacterial community structure analyses to assess pollution of water and sediments in the Lake Shkodra/Skadar, Balkan Peninsula. Env Sci Pollut Res 12, 361–368CrossRefGoogle Scholar
  49. Krebs F (2005): The pT-Method as a Hazard Assessment Scheme for Sediments and Dredged Material. In: Blaise C, J-F Férard (eds), Small-scale Freshwater Toxicity Investigations — Hazard Assessment Schemes. Springer, Dordrecht, Netherlands, pp 281–304CrossRefGoogle Scholar
  50. Mijovic S, Vukovic Z, Mazgalj A (2006): A Pan-European classification of the Lake Skadar according to environmental standards. Facta Universitatis, Series: Physics, Chemistry and Technology 4(1) 35–45Google Scholar
  51. Neumann-Hensel H, Melby K (2006): Optimisation of the Solid-Contact Test with Arthrobacter globiformis. J Soils Sediments 6, 210–207CrossRefGoogle Scholar
  52. OECD 207 (1984): OECD Guideline for testing of chemicals — Earthworm acute toxicity test. Official Gazette SRCG (1991): The law about national parks, 47/91, PodgoricaGoogle Scholar
  53. Perovic A, Seiler T-B, Bushati N, Perovic S, Keiter S, Kosmehl T, Pesic V, Karaman G, Maric D, Rastall AC, Erdinger L, Hollert H (2007): Integrative Assessment of sediments of the Lake Skadar/Shkodra using a Triad approach. J Soils Sediments (to be submitted)Google Scholar
  54. Praszczyk B, Altenburger R, Oehlmann J, Markert B, Schüürmann G (1999): Brauchen wir einen Biotest mit höheren Pflanzen in der aquatischen Toxikologie? In: Oehlmann J, Markert B (eds), Ökotoxikologie — Ökosystemare Ansätze und Methoden. ecomed, Landsberg, pp 151–163Google Scholar
  55. Radulovic V (1997): The waters of the Lake Skadar and its neighbouring aquifers as a water supplying sources, CANU, Scientific Meeting, Vol. 44, 39–65, PodgoricaGoogle Scholar
  56. Radulovic M, Perovic N, Jakovljevic M (1997): The contents of nickel and chromium in some soil types in the region of Zeta, CANU, Scientific Meeting, Vol. 44, 151–158, PodgoricaGoogle Scholar
  57. Rakocevic-Nedovic J, Hollert H (2005): Phytoplankton community and chlorophyll a as trophic state indices of Lake Skadar (Montenegro, Balkan). Env Sci Pollut Res 12, 146–152CrossRefGoogle Scholar
  58. Rastall A, Neziri A, Vukovic Z, Jung C, Mijovic S, Hollert H, Nikcevic S, Erdinger L (2004): The identification of Readily Bioavailable Pollutants in Lake Shkodra/Skadar Using Semipermeable Membrane Devices (SPMDs), Bioassays and Chemical Analysis. Env Sci Pollut Res 11, 249–253CrossRefGoogle Scholar
  59. SedNet (2004): Contaminated Sediments in European River Basins. European Sediment Research NetworkGoogle Scholar
  60. Seiler T-B, Rastall AC, Leist E, Erdinger L, Braunbeck T, Hollert H (2006): Membrane dialysis extraction (MDE): A novel approach for extracting toxicologically relevant hydrophobic organic compounds from soils and sediments for assessment in biotests. J Soils Sediments 6, 20–29CrossRefGoogle Scholar
  61. Stanley R (1974): Toxicity of heavy metals and salts to Eurasian watermilfoil (Myriophyllum spicatum L.). Arch Environ Contam Toxicol 2(4) 331–341CrossRefGoogle Scholar
  62. Skadarsko jezero (Site 3YU003): In: A directory of wetlands of international importance (7th edition) 2002. The Ramsar Convention Bureau. Gland, SwitzerlandGoogle Scholar
  63. Vizi O (1995): Some effects of the Skadar lake eutrophication on example of macrophytic vegetation, CANU, Scientific Meeting, Vol 44, pp 299–308, PodgoricaGoogle Scholar
  64. Vizi O (1997): Zastita Skadarskog jezera od zagadjenja, CANU, Scientific Meeting, Vol. 44, 31–38, PodgoricaGoogle Scholar
  65. Wang W, Freemark KE (1995): The use of plants for environmental monitoring and assessment. Ecotoxicol Environ Saf 30, 289–301CrossRefGoogle Scholar
  66. Wang W (1991): Literature review on higher plants for toxicity testing. Water, Air Soil Poll 59, 381–400CrossRefGoogle Scholar
  67. Wang W (1986): Toxicity tests of aquatic pollutants by using common duckweed. Environ Poll 11, 1–14Google Scholar

Copyright information

© ecomed publishers 2007

Authors and Affiliations

  • Danijela Stesevic
    • 1
  • Ute Feiler
    • 2
  • Danijela Sundic
    • 1
  • Slavoljub Mijovic
    • 1
  • Lothar Erdinger
    • 3
  • Thomas-Benjamin Seiler
    • 4
    • 5
  • Peter Heininger
    • 2
  • Henner Hollert
    • 4
    • 5
  1. 1.Faculty of SciencesUniversity of MontenegroPodgoricaMontenegro
  2. 2.Federal Institute of HydrologyKoblenzGermany
  3. 3.Institute of HygieneUniversity of HeidelbergHeidelbergGermany
  4. 4.Department of ZoologyUniversity of HeidelbergHeidelbergGermany
  5. 5.Institut für Umweltforschung — Biologie V: Lehr-und Forschungsgebiet ÖkosystemanalyseRWTH AachenAachenGermany

Personalised recommendations