Journal of Soils and Sediments

, Volume 7, Issue 5, pp 285–295 | Cite as

Sediment management options for the lower Ebro River and its delta

  • Albert RoviraEmail author
  • Carles Ibàñez
Review Article Sediment Linkages Between the River Catchment and the Sea


Background, Aim and Scope

Past and present management of the Ebro catchment have altered water, sediment and nutrient fluxes of the lower Ebro River and its delta. The construction of the Mequinensa and Riba-Roja dams during the 1960s disrupted the sediment transport continuity. As a result, the lower Ebro River and its delta are facing a reduction in sediment delivery which is estimated to be up to 99% of its original yield (about 3 × 107 t/yr). Consequently, about 45% of the emerged delta will be under the mean sea level by 2100 due to subsidence and sea level rise, whereas the delta coast is retreating at a rate of several meters per year in the mouth area. This paper aims to establish the basis for a sediment management plan directed to offset the effects of the sediment delivery deficit of the Ebro delta.

Main Features

A new management plan named ‘Integrated Plan for the Protection of the Ebro Delta’ (PIPDE) is being presently elaborated in order to develop sustainable management of the Ebro River and delta through an integrated management of water, sediment and habitats, in order to achieve European Union (EU) Water Framework Directive (WFD) requirements. Among other aspects, the plan aims to restore the sediment flux of the lower Ebro River by means of both the removal of the sediment trapped behind the dams and the transport of the sediment downstream of the reservoirs to the river mouth and delta plain.


Preliminary studies show that the ‘flushing flood’ method has lower costs and is the most adapted method to transfer the sediments retained into the Riba-Roja dam. The required sediment load to stop coastal retreat in the mouth area and to compensate relative sea level rise represents 10 times the present suspended load (0.021 g/l), but is 10 times lower than the total volume of sediment delivered to the sea under natural conditions. Sediment delivery to the delta plain can be accomplished through the rice irrigation system, a method used prior to dam construction.


Problems of achieving a sustainable management of water and sediment are mostly linked to reservoir management. Technical problems associated with by-passing sediments through the reservoirs can be solved through operational and structural changes. Benefits of sediment flow recovery are multiple, including maintenance of the reservoir capacity, possible decline of invasive species, reduction of elevation loss and coastal retreat in the delta.


The partial restoration of sediment fluxes in the lower Ebro River and its delta is technically feasible and environmentally desirable, but further detailed studies need to be carried out before the plan can be implemented.


Overall, the sustainability of the lower Ebro River and delta can only be guaranteed by the implementation of a new reservoir management concept where the ecological and morphological values, as well as the economical and social values, have to be taken into consideration.


Delta Ebro River flushing floods reservoir management concept sediment deficits sediment linkages between the river catchment and the sea sediment management plan 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Batalla RJ (2003): Sediment deficit in rivers caused by dams and instream gravel mining. A review with examples from NE Spain. Cuaternario y Geomorfología 17(3–4) 79–91Google Scholar
  2. Batalla RJ, Gómez JC, Kondolf GM (2004): Reservoir-induced hydrological changes in the Ebro River Basin (NE Spain). J Hydrology 290, 117–136CrossRefGoogle Scholar
  3. Batalla RJ, Vericat D, Martínez TI (2006): River-channel changes downstream from dams in the lower Ebro River. Zeitschrift für Geomorphologie/Supplement 143, 1–15Google Scholar
  4. Canicio A, Ibáñez C (1999): The Holocene evolution of the Ebre Delta (Catalonia, Spain). Acta Geographica Sinica 54(5) 462–469Google Scholar
  5. Catalán JG (1969): Química del Agua. Editorial Blume, BarcelonaGoogle Scholar
  6. Day JW, Barras J, Clairain E (2005): Implications of global climatic change and energy cost and availability for the restoration of the Mississippi delta. Ecological Engineering 24, 253–260CrossRefGoogle Scholar
  7. Day JW, Yáñez-Arancibia A, Mitsch WJ, Lara-Domínguez AL, Day JN, Ko JY, Lane R, Lindsey J, Lomeli DZ (2003): Using ecotechnology to address water quality and wetland habitat loss problems in the Mississippi basin: A hierarchical approach. Biotechnological Advances 22, 135–159CrossRefGoogle Scholar
  8. Day JW, Shaffer GP, Britsch LD, Reed DJ, Howes ST, Cahoon D (2000): Pattern and process of land loss in the Mississippi Delta: A spatial and temporal analysis of wetland habitat change. Estuaries 23(4) 425–438CrossRefGoogle Scholar
  9. Day JW, Martin JF, Cardoch L, Templet PH (1997): System functioning as a basis for sustainable management of deltaic ecosystems. Coastal Management 25, 115–153Google Scholar
  10. Day JW, Pont D, Hensel P, Ibáñez C (1995): Impacts of sea-level rise on deltas in the Gulf of Mexico and the Mediterranean: the importance of pulsing events to sustainability. Estuaries 18(4) 636–647CrossRefGoogle Scholar
  11. Day JW, Templet PH (1989): Consequences of sea level rise: implications from the Mississippi delta. Coastal Management 17, 241–257Google Scholar
  12. Dearing JA, Jones RT (2003): Coupling temporal and spatial dimensions of global sediment flux through lake and marine sediment records. Global and Planetary Change 39, 147–168CrossRefGoogle Scholar
  13. DeLaune RD, Jugsujinda A, Peterson GW, Patrick WH (2003): Impact of Mississippi River freshwater reintroduction on enhancing marsh accretionary processes in a Louisiana estuary. Estuarine, Coastal and Shelf Science 58, 653, 662CrossRefGoogle Scholar
  14. Gallart F, Llorens P (2002): La cubierta forestal de la cuenca del Ebro: Caracterización espacio-temporal y afección en la disminución de recursos hídricos. Confederación Hidrográfica del Ebro. Unpublished reportGoogle Scholar
  15. Gallart F, Llorens P (2004): Observations on land cover changes and the headwaters of the Ebro catchment, water resources in Iberian Peninsula. Physics and Chemistry of the Earth 29(11–12) 769–773Google Scholar
  16. Goosen H, Vellinga P (2004): Experiences with restoration of inland freshwater wetlands in the Netherlands: Lessons for science and policy-making. Regional Environmental Change 4(2–3) 79–85Google Scholar
  17. Guillen J, Palanques A (1992): Sediment dynamics and hydrodynamics in the lower course of a river highly regulated by dams: The Ebro River. Sedimentology 39, 567–579CrossRefGoogle Scholar
  18. Gornitz V (1995): Sea-level rise: A review of recent past and near-future trends. Earth Surface Processes and Landforms 20, 7–20CrossRefGoogle Scholar
  19. Gorría H (1877): Desecación de las marismas y terrenos pantanosos denominados de los alfaques. Technical report. Ministerio de Agricultura, MadridGoogle Scholar
  20. Hartmann S (2004): Sediment management of alpine reservoirs considering ecological and economical aspects. Proceedings of the Ninth International Symposium on River Sedimentation October 18–21, 2004, Yichang, China, pp 38–45Google Scholar
  21. Herbich JB (1992): Handbook of Dredging Engineering. McGraw-Hill Co., New YorkGoogle Scholar
  22. Hotchkiss RH, Xi H (1995): Designing a Hydrosuction Sediment Removal System. Intl. Symp. River Sedimentation, Central Board of Irrigation and Power, New Delhi, pp 165–174Google Scholar
  23. Hu D, Saito Y, Kempe S (2001): Sediment and nutrient transport to the coastal zone. In: Galloway JN, Melillo JM (eds), Asian change in the Context of Global Climate Change: Impact of Natural and Anthropogenic Changes in Asia on Global Biochemical cycles. IGBP Publication Series, vol. 3, Cambridge Univ. Press, Cambridge, pp 245–270Google Scholar
  24. Ibáñez C, Prat N, Duran C, Pardos M, Munné A, Ginebreda A, Tirapu L, Andreu R, Caiola N, Cid N, Hampel H, Sánchez R, Trobajo R (in press): Changes in dissolved nutrients in the lower Ebro river: causes and consequences. LimneticaGoogle Scholar
  25. Ibànez C, Prat N (2003): The environmental impact of the Spanish National Hydrological Plan on the Lower Ebro River and delta. Water Resources Development 19(3) 485–500CrossRefGoogle Scholar
  26. Ibáñez C, Day JW, Pont D (1999): Primary Production and decomposition in wetlands of the Rhône Delta, France: interactive impacts of human modifications and relative sea level rise. J Coastal Research 15(3) 717–731Google Scholar
  27. Ibàñez C, Canicio A, Day JW, Curcó A (1997): Morphologic development, relative sea level rise and sustainable management of water and sediment in the Ebre Delta, Spain. J Coastal Conservation 3, 191–202Google Scholar
  28. Ibàñez C, Prat N, Canicio A (1996): Changes in the hydrology and sediment transport produced by large dams on the lower Ebro River and its estuary. Regulated Rivers: Research and Management 12, 51–62CrossRefGoogle Scholar
  29. Intergovernmental Panel on Climate Change (IPCC) (2007): The physical basis of climate change. Working Group I. Cambridge University PressGoogle Scholar
  30. Jansson MB (1992): Suspended sediment outflow from the Cachí Reservoir during the flushing in 1990. In: Jansson MB, Rodriguez (eds), Sedimentological studies in the Cachí Reservoir, Costa Rica. UNGI Report no 81. Department of Physical Geography, Uppsala University, SwedenGoogle Scholar
  31. Jiménez JA, Sánchez-Arcilla A (1993): Medium-term coastal response at the Ebro Delta, Spain. Marine Geology 114, 105–118CrossRefGoogle Scholar
  32. Jiménez JA, Ametller S, Sánchez-Arcilla A (1995): A first morphological behaviour model for the Ebro Delta coast. In: Mid-term Workshop of Meddelt Project, Arles, FranceGoogle Scholar
  33. Kapsimalis V, Poulos SE, Karageorgis AP, Pavlakis P, Collins M (2005): Recent evolution of a Mediterranean deltaic coastal zone: Human impacts on the Inner Thermaikos Gulf, NW Aegean Sea. J Geological Society 162, 897–908, Part 6CrossRefGoogle Scholar
  34. Kereselidze NB, Kutavaya VI, Tsagareli YA (1985): Silting and flushing mountain reservoirs, exemplified by the Rioni series of hydroelectric stations. Power Technology and Engineering (formerly Hydrotechnical Construction) 19(9) 514–520CrossRefGoogle Scholar
  35. Kuhl D (1992): 14 years of artificial grain feeding in the Rhine downstream the barrage Iffezhein. 5th Intl. Symp. River Sedimentation, Karlsruhe, pp 1121–1129Google Scholar
  36. Liu J, Tominaga A (2003): New Development of Sediment Flushing Technique. In: World Water Congress, Philadelphia, Pennsylvania, USA, June 23–26, 2003Google Scholar
  37. Lu Y (1995): Three Gorges Project on the Yantze River. Annual Meeting of ICOLD Executive Committee, Oslo, NorwayGoogle Scholar
  38. Martín-Vide JP, Mazza de Almeida GA, Helmbrecht J, Ferrer C, Rojas Lara DL (2004): Estudio técnico-económico de alternativas del programa para corregir la subsidencia y regresión del delta del Ebro. Technical Report (unpublished)Google Scholar
  39. Martín-Vide JP, Roca M, Ibáñez C (2005): Estudio General. Programa para corregir la subsidencia y regresión del delta del Ebro. Arrastre controlado de sedimento en el embalse de Riba-Roja. Estudio de Aplicabilidad. Technical Report (unpublished)Google Scholar
  40. Mendelssohn IA, Kuhn N (2003): Sediment subsidy: Effects on soil-plant responses in a rapidly submerging coastal salt marsh. Ecological Engineering 21, 115–128CrossRefGoogle Scholar
  41. Métivier F, Gaudemar Y (1999): Stability of output fluxes of large rivers in south and east Asia during the last 2 million years: Implications on floodplain processes. Basin Research 11, 293–303CrossRefGoogle Scholar
  42. MIMAM (2000). Plan Hidrológico Nacional. Análisis de los sistemas hidráulicos. Ministerio de Medio Ambiente, Madrid, p 390Google Scholar
  43. Morris GL, Fan J (1998): Reservoir sedimentation handbook. McGraw-Hill, New YorkGoogle Scholar
  44. Muñoz I (1990): Limnología de la part baixa del riu Ebre i els canals de reg: Els factors fisico-químics, el fitoplancton i els macroinvertebrats bentónics. PhD Thesis, University of BarcelonaGoogle Scholar
  45. Novoa M (1984): Precipitaciones y avenidas extraordinarias en Catalunya. Ponencias y comunicaciones de las Jornadas de trabajo sobre inestabilidad de laderas en el Pirineo 1, 1.15Google Scholar
  46. Palanques A (1987): Dinámica sedimentaria, minerología y micro-contaminantes inorgánicos de las suspensiones y de los sedimentos superficiales en el margen continental del Ebro, PhD Thesis, University of BarcelonaGoogle Scholar
  47. Phillips JD, Slattery MC (2006): Sediment storage, sea level, and sediment delivery to the ocean by coastal plain rivers. Progress in Physical Geography 30(4) 513–530CrossRefGoogle Scholar
  48. Phillips JD (2003): Alluvial storage and the long term stability of sediment yields. Basin Research 15, 153–163CrossRefGoogle Scholar
  49. Pont D, Day J, Hensel P, Franquet E, Torre F, Rioual P, Ibañez C, Coulet E (2002): Response scenarios for the deltaic plain of the Rhône in the face of an acceleration in the rate of sea level rise, with a special attention for Salicornia-type environments. Estuaries 25, 337–58CrossRefGoogle Scholar
  50. Poulos SE, Collins MB (2002): Fluviatile sediment fluxes to the Mediterranean Sea: A quantitative approach and the influence of dams. In: Jones SJ, Frostick LE (eds), Sediment flux to basins: Causes, Controls and Consequences. Journal of Geological Society of London, Special Publications 191, 227–245Google Scholar
  51. Roura M (2004): Incidència de l’embassament de Mequinensa en el transport de sòlids en suspensió i la qualitat de l’aigua del riu Ebre. PhD Thesis, University of BarcelonaGoogle Scholar
  52. Sanz ME, Avendaño C, Cobo R (1999): Influencia de los embalses en el transporte de sedimentos hasta el río Ebro (España). Proceedings of the Congres on Hydrological and geochemical processes in large-scale river basins. HIBAM, Shahim, 1985Google Scholar
  53. Shannon JP, Blinn DW, McKinney T, Benenati EP, Wilson KP, O’Brien C (2001): Aquatic food base response to the 1996 test flood below Glen Canyon Dam, Colorado River, Arizona. Ecological Applications 11(3) 672–685CrossRefGoogle Scholar
  54. Shen H (1999): Flushing sediment through reservoirs. J Hydraulic Research 37(6) 112–136Google Scholar
  55. Suhayda JN, Kemp GP, Jones RS, Peckham J (1991): Restoration of wetlands using pipeline transported sediments, IN Coastal Depositional Systems in the Gulf of Mexico, Proc. GCS/SEPM Found. 12th Ann Res Conf, Dec 8–11, Houston, TXGoogle Scholar
  56. Turner RE (1996): Fundamental of Hydraulic Dredging, 2d ed. ASCE, New YorkGoogle Scholar
  57. Turner RE, Streever B (2002): Approaches to coastal wetland restoration: Northern Gulf of Mexico. SPB Academic Publishing, Den Hague, The NetherlandsGoogle Scholar
  58. Varela JM, Gallardo A, López de Velasco A (1986): Retención de sólidos por los embalses de Mequinenza y Ribarroja. Efectos sobre los aportes al Delta del Ebro. In: Mariño M (eds), El sistema integrado del Ebro. Gráficas Hermes, Madrid, pp 203–219Google Scholar
  59. Vericat D, Batalla RJ (2006): Sediment transport in a large impounded river: The lower Ebro, NE Iberian Peninsula. Geomorphology 79(1–2) 72–92CrossRefGoogle Scholar
  60. Vericat D, Batalla RJ, Garcia C (2006): Breakup and reestablishment of the armour layer in a large gravel-bed river below dams: The lower Ebro. Geomorphology 76, 122–136CrossRefGoogle Scholar
  61. Vörösmarty CJ, Meybeck M, Fekete B, Sharma K, Green P, Syvitski JPM (2003): Anthropogenic sediment retention: Major global impact from registered river impoundments. Global and Planetary Change 39, 169–190CrossRefGoogle Scholar
  62. Walling DE (2006): Human impact on land-ocean sediment transfer by the world’s rivers. Geomorphology 79(3–4) 192–216CrossRefGoogle Scholar
  63. Wang WC, Tsai CT, Hsu SK, Hseih CD (1995): Evaluation of alternatives for reservoir sediment removal: A case study. 15th Annual USCOLD Lecture Series, USCOLD, Denver, pp 381–387Google Scholar
  64. Wright LD, Coleman JM (1974): Mississippi river mouth processes: Effluent dynamics and morphologic development. J Geol 82, 751–778CrossRefGoogle Scholar
  65. Xie SX, Wang HJ (2001): First measurement of density current in Xiaolangdi reservoir. Yellow River Water Resources Commission, 〈

Copyright information

© ecomed publishers 2007

Authors and Affiliations

  1. 1.Aquatic Ecosystems UnitIRTACataloniaSpain

Personalised recommendations