A new sediment contact assay to assess particle-bound pollutants using zebrafish (danio rerio) embryos

  • Henner Hollert
  • Steffen Keiter
  • Natalie König
  • Marc Rudolf
  • Markus Ulrich
  • Thomas Braunbeck
Research Article


Goal, Scope and Background. Based on a bioassay battery covering only primary producers and consumers as well as degraders, the potential ecological hazard of sediments to vertebrates cannot be estimated comprehensively. Therefore, there is an urgent need to develop and standardize integrated vertebrate-based test systems for sediment investigation strategies. Whereas vertebratebased in vitro systems have frequently been used for the investigation of aqueous samples, there is a significant lack of whole sediment assays. Thus, the purpose of the present study was: (1) to develop a rapid and reliable, but comprehensive method to investigate native sediments and particulate matters without preceding extraction procedures; (2) to compare the hazard potential of solid phase sediments to the effects of corresponding pore waters and organic extracts in order to characterize the bioavailability of the particle-bound pollutants; and (3) to relatively evaluate the embryotoxic effects of sediments from the catchment areas of the rivers Rhine, Neckar and Danube.

Methods (or Main Features).

To investigate the toxicity of sediment samples on vertebrates, the standard embryo toxicity test with the zebrafish (Danio rerio; Hamilton-Buchanan 1922) according to DIN 38415-6 was modified with respect to exposure scheme and toxicological endpoints. Sediments from the catchment area of the Neckar River were assessed using pore waters, acetonic extracts and native sediments in order to get inside into the potential bioavailability of particle-bound pollutants. A comprehensive test protocol for the investigation of native sediments in the embryo toxicity test with the zebrafish is presented.

Results and Discussion.

The fish embryo assay with Danio rerio can be carried out with both aqueous and organic sediment extracts as well as native (whole, solid phase) sediment samples. Elongation of exposure time from 48 to up to 196 h significantly increased the mortality. Using the fish egg assay with native sediments, a broad range of embryotoxic effects could be elucidated, including clear-cut dose-response curves for the embryotoxic effects of contaminated sediments; in contrast, absence of embryotoxic effects could be demonstrated even for the highest test concentrations of unpolluted sediments. With native sediments, embryotoxicity was clearly higher than with corresponding pore waters, thus corroborating the view that — at least for fish eggs — the bioavailability of particle-bound lipophilic substances in native sediments is higher than generally assumed. The relative ranking of sediment toxicity was identical using both native sediments and sediment extracts, EC20 values of the latter, however, being eight time lower higher than with the native sediments. A comparison of the embryo toxic effects of samples from the Neckar area with locations along the Rhine and Danube rivers elucidated a broad range of results, thus indicating different levels of contamination.


A modified protocol of the zebrafish embryo test allows the assessment of sediment toxicity in both aqueous extracts and native sediments. The isolated investigation of pore waters may result in a clear-cut underestimation of the bioavailability of lipophilic particle-bound substances (as determined by native sediments).

Recommendations and Perspectives.

The zebrafish embryo test with native (whole, solid phase) sediments appears very promising for the evaluation of the bioavailable fraction of lipophilic particle-bound substances and can therefore be recommended for the evaluation of vertebrate toxicity in tiered sediment test strategies and dredging directives such as the HABAB-WSV. Whereas acetone extracts may be tested as a rough estimation of embryotoxicity, native sediment samples will provide a more comprehensive and realistic insight into the bioavailable hazard potential


Acetone extracts bioavailability Danio rerio early life stage embryo toxicity native samples pore water sediment contact test suspended matter whole sediment assay 


  1. Ahlf W (1995): Biotests an Sedimenten, In: Steinberg C, Bernhardt H, Klappner H (eds.) Handbuch Angewandte Limnologie Teil Aquatische Ökotoxikologie, ecomed verlag, 1–43Google Scholar
  2. Ahlf W, Braunbeck T, Heise S, Hollert H (2002a): Sediment and Soil Quality Criteria. In: Burton F, McKelvie I, Förstner U, Guenther A (eds.) Environmental Monitoring Handbook, McGraw-Hill, pp. 17.1–18Google Scholar
  3. Ahlf W, Förstner U (2001): Managing contaminated sediments: 1. Improving chemical and biological criteria. J Soils & Sediments 1, 30–36CrossRefGoogle Scholar
  4. Ahlf W, Hollert H, Neumann-Hensel H, Ricking M (2002b): A Guidance for the Assessment and Evaluation of Sediment Quality: A German Approach Based on Ecotoxicological and Chemical Measurements. J Soils & Sediments 2, 37–42CrossRefGoogle Scholar
  5. Andersson PL, Berg AH, Bjerselius R, Norrgren L, Olsen H, Olsso, PE, Orn S, Tysklind M (2001): Bioaccumulation of selected PCBs in zebrafish, three-spined stickleback, and arctic char after three different routes of exposure. Arch Environ Contam Toxicol 40, 519–30CrossRefGoogle Scholar
  6. Becker R (1992): Kartierung der Oberflachengewässer. Report. Heidelberg 213 (in German)Google Scholar
  7. Behrens A, Schirmer K, Bols NC, Segner H (1998): Microassay for rapid measurement of 7-ethoxyresorufin-O-deethylase activity in intact fish hepatocytes. Mar Environ Res 46, 369–373CrossRefGoogle Scholar
  8. Benson WH, DiGiulio RT (1992): Biomarkers in hazard assessments of contaminated sediments, In: Burton, GA (eds.) Sediment toxicity assessment, Lewis-Publishers, pp. 241–265Google Scholar
  9. BfG (2000): Handlungsanweisungen für den Umgang mit Baggergut im Binnenland (HABAB-WSV). online: www.bafg.de (in German)Google Scholar
  10. Billsson K, Westerlund L, Tysklind M, Olsson PE (1998): Developmental disturbances caused by polychlorinated biphenyls in zebrafish (Brachydanio rerio). Mar Environ Res 46, 461–464CrossRefGoogle Scholar
  11. Borenfreund E, Puerner JA (1984): A simple quantitative procedure using monolayer cultures for cytotoxicity assays (HTD/NR-90). J Tissue Cult Meth, 7–9Google Scholar
  12. Brack W, Schirmer K, Kind T, Schrader S, Schuurmann G (2002): Effect- directed fractionation and identification of cytochrome P4501a-inducing halogenated aromatic hydrocarbons in a contaminated sediment. Environ Toxicol Chem 21, 2654–62CrossRefGoogle Scholar
  13. Brack W, Segner H, Möder M, Schüürmann G (2000): Fixed-effect-level toxicity equivalents — A suitable parameter for assessing ethoxyresorufin- O-deethylase induction potency in complex environmental samples. Environ Toxicol Chem 19, 2493–2501CrossRefGoogle Scholar
  14. Braunbeck T, Strmac M (2001): Assessment of water and sediment contamination in small streams by means of cytological and biochemical alterations in isolated rainbow trout (Oncorhynchus mykiss) hepatocytes. J Aquat Ecosys Stress Recov 8, 337–354CrossRefGoogle Scholar
  15. Bresch H (1991): Early life-stage test in zebrafish versus a growth test in rainbow trout to evaluate toxic effects. Bull Environ Contam Toxicol 46, 641–648CrossRefGoogle Scholar
  16. Burton GA (1991): Assessing the toxicity of freshwater sediments. Environ Tox Chem 10, 1585–1627CrossRefGoogle Scholar
  17. Burton GA (1992):Plankton, macrophyte, fish, and amphibian toxicity testing of freshwater sediments. In: Burton GA (eds.) Sediment toxicity assessment, Lewis Publishers, pp. 167–182Google Scholar
  18. Burton GA (1995): Sediment toxicity testing issues and methods. In: Hoffman DJ, Rattner BA, Burton GA, Cairns J (eds.) Handbook of Ecotoxicology, Lewis Publishers, pp. 70–103Google Scholar
  19. Carr R, Nipper M, Adams W, Berry W, Burton JG, Ho KT, MacDonald D, Scroggins R, Winge, P (2001): Summary of the SETAC Workshop on pore water toxicity testing: biological, chemical, and ecological considerations with a review of methods and applications, and recommendations for future areas of research; 18-22 March 2000; Pensacola, FL. Society of Environmental Toxicology and Chemistry (SETAC). Pensacola, FL, 38 pp.Google Scholar
  20. Castano A, Vega M, Balzquez T, Tarazona JV (1994): Biological alternatives to chemical identification for the ecotoxicological assessment of industrial effluents: The RTG-2 in vitro cytotoxicity test. Environ Toxicol Chem 13, 1607–1611CrossRefGoogle Scholar
  21. Chapman PM (2000): The Sediment Quality Triad: then, now and tomorrow. Int J Environ Poll 13, 351–356CrossRefGoogle Scholar
  22. Chapman PM, Wang FY, Germano JD, Batley G (2002): Pore water testing and analysis: the good, the bad, and the ugly. Mar Poll Bull 44, 359–366CrossRefGoogle Scholar
  23. Denizot F, Lang R (1986): Rapid colorimetric assay for cell growth and survival; Modification to the terazolium dye procedure giving improved sensitivity and reliability. J Immunol Meth 89, 271CrossRefGoogle Scholar
  24. Duerr M, Hollert H, Braunbeck T, Engwall M, van Bavel B, Tysklind M, Erdinger L (2001): Biological and chemical determination of dioxins and dioxin-like compounds in sediments in the catchment area of the Neckar river. Intern J Hygiene Environ Health 204, 277Google Scholar
  25. Eaton RC, Farley RD (1974): Spawning cycle and egg production of zebrafish, Brachydanio rerio, in the laboratory. Copeia 1974, 195–204CrossRefGoogle Scholar
  26. Ekwall B, Barile FA, Castano A, Clemedson C, Clothier RH, Dierickx P, Ferro M, Fiskesjo G, GarzaOcanas L, GomezLechon MJ, Gulden M, Hall T, Isomaa B, Kahru A, Kerszman G, Kristen U, Kunimoto M, Karenlampi S, Lewan L, Loukianov A, Ohno T, Persoone G, Romert L, Sawyer TW, Shrivastava R, Segner H, Stammati A, Tanaka N, Valentino M, Walum E, Zucco F (1998): Part VI. The prediction of human toxicity by rodent LD50 values and results from 61 in vitro methods. ATLA 2, 617–658Google Scholar
  27. Ensenbach U (1998): Embryonic development of fish — A model to assess the toxicity of sediments to vertebrates. Fresenius Environ Bull 7, 531–538Google Scholar
  28. Ensenbach U, Nagel R (1995): Toxicity of complex chemical mixtures: acute and long-term effects on different life stages of zebrafish (Brachyodanio rerio). Ecotox Environ Safety 30, 151–157CrossRefGoogle Scholar
  29. Fent K, Meier W (1994): Effects of triphenyltin on fish early life stages. Arch Environ Contam Toxicol 27, 224–231CrossRefGoogle Scholar
  30. Giesy JP, Hilscherova K, Jones PD, Kannan K, Machala M (2002): Cell bioassays for detection of aryl hydrocarbon (AhR) and estrogen receptor (ER) mediated activity in environmental samples. Mar Pollut Bull 45, 3–16CrossRefGoogle Scholar
  31. Harkey GA, Landrum PF, Klaine SJ (1994): Comparison of whole-sediment, elutriate and pore-water exposures for use in assessing sediment-associated organic contaminants in bioassays. Environ Toxicol Chem 13, 1315–1329CrossRefGoogle Scholar
  32. Harris GE, Metcalfe TL, Metcalfe CD, Huestis SY (1994): Embryotoxicity of extracts from lake Ontario rainbow trout (Oncorhychus mykiss) to Japanese medaka (Oryzias latipes). Environ Toxicol Chem 13, 1393–1403CrossRefGoogle Scholar
  33. Heise S, Ahlf W (2002): The Need for New Concepts in Risk Management of Sediments: Historical Developments, Future Perspectives and New Approaches. J Soils & Sediments 2, 4–8CrossRefGoogle Scholar
  34. Hilscherova K, Dusek L, Kannan K, Giesy JP, Holoubek I (2000a): Evaluation of cytotoxicity, dioxin-like activity and estrogenicity of complex environmental mixtures. Cent Eur J Public Health, Suppl, 28–9Google Scholar
  35. Hilscherova K, Machala M, Kannan K, Blankenship AL, Giesy JP (2000b): Cell Bioassays for Detection of Aryl Hydrocarbon (AhR) and Estrogen Receptor (ER) Mediated Activity in Environmental Samples. ESPR — Environ Sci & Pollut Res 7, 159–171CrossRefGoogle Scholar
  36. Hollert H, Dürr M, Geier V, Erdinger L, Braunbeck T (1999a): Ökotoxikologie in vitro: Gefährdungspotential von Neckarsedimenten, In: Oehlmann, J, Markert, B (eds.) Ökosystemare Ansätze in der Ökotoxikologie, ecomed verlag, pp. 444–462 (in German)Google Scholar
  37. Hollert H, Gratzer H, Ahlf W, Braunbeck T (1999b) Einleitung — Kapitel Ökotoxikologie. In: DVWK, Kern U, Westrich B (eds.): Methoden zur Erkundung, Untersuchung und Bewertung von Sedimentablagerungen und Schwebstoffen in Gewässern, DVWK-Schriften, Band 128, Kommissionsbetrieb Wirtschafts- und Verlagsgesellschaft Gas und Wasser mbH, pp. 36–51 (in German)Google Scholar
  38. Hollert H, Dürr M, Erdinger L, Braunbeck T (2000a): Cytotoxicity of settling particulate matter (SPM) and sediments of the Neckar river (Germany) during a winter flood. Environ Toxicol Chem 19, 528–534CrossRefGoogle Scholar
  39. Hollert H, Dürr M, Haag I, Winn N, Holtey-Weber R, Kern U, Färber H, Westrich B, Erdinger L, Braunbeck T (2000b): A combined hydraulic and in vitro bioassay approach to assess the risk of erosion and ecotoxicological implications of contaminated sediments in a lock-regulated river system. In: BfG (eds.) Sediment assessement in European River Basins, Reihe: Mitteilungen der Bundesanstalt für Gewässerkunde, pp. 156–160Google Scholar
  40. Hollert H, Karaus U, Braunbeck T (2000c): Ökotoxikologische Belastung von Neckarsedimenten. Zwischenbericht an die Bundesanstalt für Gewässerkunde 65 p (in German)Google Scholar
  41. Hollert H (2001): Entwicklung eines kombinierten Untersuchungssystems für die Bewertung der ökotoxikologischen Belastung von Fließgewässersedimenten und -schwebstoffen. Dissertation, Fakultät für Biologie der Universität Heidelberg, online: http://www.ub.uni-heidelberg.de/ archiv/1602, 258 pp. (in German)Google Scholar
  42. Hollert H, Dürr M, Olsman H, Halldin K, Bavel Bv, Brack W, Tysklind M, Engwall M, Braunbeck T (2002a): Biological and chemical determination of dioxin-like compounds in sediments by means of a sediment triad approach in the catchment area of the Neckar River. Ecotoxicologv 11, 323–336CrossRefGoogle Scholar
  43. Hollert H, Heise S, Pudenz S, Brüggemann R, Ahlf W, Braunbeck T (2002b): Application of a sediment quality triad and different statistical approaches (Hasse diagrams and fuzzy logic) for the comparative evaluation of small streams. Ecotoxicology 11, 311–321CrossRefGoogle Scholar
  44. Hollert H, Dürr M, Holtey-Weber R, Islinger M, Brack W, Färber H, Erdinger L, Braunbeck T (2003): Endocrine disruption of water and sediment extracts in a non-radioactive dot blot/RNAse protection-assay using isolated hepatocytes of rainbow trout — How explain deficiencies between bioanalytical effectiveness and chemically determined concentrations? Anal Bioanal Chem, submittedGoogle Scholar
  45. Hoss S, Juttner I, Traunspurger W, Pfister G, Schramm KW, Steinberg, CE (2002): Enhanced growth and reproduction of Caenorhabditis elegans (Nematoda) in the presence of 4-nonylphenol. Environ Pollut 120, 169–72CrossRefGoogle Scholar
  46. Keiter S, Kosmehl T, Rastall A, Aföldi K, Erdinger L, Wurm K, Braunbeck T, Hollert H (2003): Ecotoxicological assessment of sediment-, SPM- and water samples — Searching causes for disturbed reproduction of fish in the river Danube. Accepted oral presentation, SETAC-GLB meeting HeidelbergGoogle Scholar
  47. Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TS (1995): Stages of embryonic development of the zebrafish. Dev Dyn 203, 253–310Google Scholar
  48. Kocan RM, Matta MB, Salazar SM (1996): Toxicity of weathered coal tar for shortnose sturgeon (Acipenser brevirostrum) embryos and larvae. Arch Environ Contam Toxicol 31, 161–165CrossRefGoogle Scholar
  49. Konig N, Garke V, Kosmehl T, Glaß B, Golod A, Leist E, Wetterauer B, Johannsen H, Braunbeck T, Hollert H (2002): Der Zebrabärbling in Fischeitest und Comet-Assay — Embryotoxische Untersuchungen von Rheinsedimenten. Bericht an die Bundesanstalt für Gewässerkunde (in German)Google Scholar
  50. Kwan KK, Dutka BJ (1995): Comparative assessment of two solid-phase toxicity bioassays: The direct sediment toxicity testing procedure (DSTTP) and the Microtox(R) solid-phase test (SPT). Bull Environ Contam Toxicol 55, 338–346CrossRefGoogle Scholar
  51. Laale HW (1977): The biology and use of zebrafish, Brachydanio rerio, in fisheries research. A literature review. J Fish Biol 10, 121–173.CrossRefGoogle Scholar
  52. Lee LE, Clemons JH, Bechtel DG, Caldwell SJ, Han KB, Pasitschniak-Arts M, Mosser D, Bols NC (1993): Development and characterization of a rainbow trout liver cell line expressing cytochrome P450-dependent monooxygenase activity. Cell Biol Toxicol 9, 279–294CrossRefGoogle Scholar
  53. Liß W, Ahlf W (1997): Evidence from whole-sediment, porewater, and elutriate testing in toxicity assessment of contaminated sediments. Ecotoxicol Environ Safety 36, 140–147CrossRefGoogle Scholar
  54. Machala M, Dusek L, Hilscherova K, Kubinova R, Jurajda P, Neca J, Ulrich R, Gelnar M, Studnickova Z, Holoubek I (2001): Determination and multivariate statistical analysis of biochemical responses to environmental contaminants in feral freshwater fish Leuciscus cephalus L. Environ Toxicol Chem 20, 1141–1148CrossRefGoogle Scholar
  55. Matta MB, Cairncross C, Kocan RM (1997): Effects of a polychlorinated biphenyl metabolite on early life stage survival of two species of trout. Bull Environ Contam Toxicol 59, 146–151CrossRefGoogle Scholar
  56. Murk AJ, Legler J, Denison MS, Giesy JP, vandeGuchte C, Brouwer A (1996): Chemical-activated luciferase gene expression (CALUX): A novel in vitro bioassay for Ah receptor active compounds in sediments and pore water. Fund Applied Toxicol 33, 149–160CrossRefGoogle Scholar
  57. Nagel R (1986): Untersuchungen zur Eiproduktion beim Zebrabärbling (Brachydanio rerio, Ham.-Buch.). J Appl Ichthyol 2, 173–181 (in German)CrossRefGoogle Scholar
  58. Nagel R (2002): DarT: The embryo test with the zebrafish Danio rerio — A general model in ecotoxicology and toxicology. ALTEX 19, 38–48Google Scholar
  59. Nagel R, Isberner K (1998): Testing of chemicals with fish — A critical evaluation of tests with special regard to zebrafish, In: Braunbeck, T, Hinton, DE, Streit, B (eds.) Fish Ecotoxicology, Birkhauser, pp. 337–352Google Scholar
  60. Nehls S, Brack W, Segner H, Schüürmann G (1998): Identification of genotoxic fractions of a contaminated sediment using the COMET-Assay and the SOS Chromotest. 8th annual Meeting of SETAC-Europe p. Poster 3I/P016Google Scholar
  61. Nendza M (2002): Inventory of marine biotest methods for the evaluation of dredged material and sediments. Chemosphere 48, 865–83CrossRefGoogle Scholar
  62. Olsson PE, Westerlund L, Teh SJ, Billsson K, Berg AH, Tysklind M, Nilsson J, Eriksson LO, Hinton DE (1999): Effects of maternal exposure to estrogen and PCB on different life stages of zebrafish (Danio rerio). Ambio 28, 100–106Google Scholar
  63. Rönnpagel K, Lß W, Ahlf W (1995): Microbial bioassays to assess the toxicity of solid associated contaminants. Ecotox Environ Safety 31, 99–103CrossRefGoogle Scholar
  64. Segner H (1998): Fish cell lines as a tool in aquatic toxicology, In: Braunbeck T, Hinton DE, Streit B (eds.) Fish ecotoxicology — Experientia Supplement, Vol. 86, Birkhäuser, pp. 1–38Google Scholar
  65. Segner H, Braunbeck T (1997): Cellular response profile to chemical stress. In: Schüürmann G, Markert B (eds.) Ecotoxicology, Wiley and Spektrum Akadem. Verlag, New York and Heidelberg, pp. 521–569Google Scholar
  66. Segner H, Lenz D, Hanke W, Schüürmann G (1994): Cytotoxicity of metals toward rainbow trout Rl cell line. Environ Toxicol Water Qual 9, 273–279CrossRefGoogle Scholar
  67. Song Y, Müller G (1993): Freshwater sediments: Sinks and sources of bromine. Naturwissenschaften 80, 558–560CrossRefGoogle Scholar
  68. Strmac M, Braunbeck T (2000): Isolated hepatocytes of rainbow trout (Oncorhynchus mykiss) as a tool to discriminate between differently contaminated small river systems. Toxicol in vitro 14, 361–377CrossRefGoogle Scholar
  69. Strmac M, Oberemm A, Braunbeck T (2002): Assessment of sediment toxicity to early life stages of fish: Effects of sediments from differently polluted small rivers on zebrafish (Danio rerio) embryos and larvae. J Fish Biol 61, 24–38CrossRefGoogle Scholar
  70. Traunspurger W, Drews C (1996): Toxicity analysis of freshwater and marine sediments with meio- and macrobenthic organisms: A review. Hydrobiologia 328, 215–261CrossRefGoogle Scholar
  71. Traunspurger W, Haitzer M, Höss M, Gratzer H, Ahlf W (1997a): Der Nematoden-Biotest mit Caenorhabditis elegans (Nematoda). Submitted for a DIN regulationGoogle Scholar
  72. Traunspurger W, Haitzer M, Hoss S, Beier S, Ahlf W, Steinberg C (1997b): Ecotoxicological assessment of aquatic sediments with Caenorhabditis elegans (nematoda) — A method for testing liquid medium and wholesediment samples. Environ Toxicol Chem 16, 245–250CrossRefGoogle Scholar
  73. Triebskorn R, Böhmer J, Braunbeck T, Honnen W, Kohler H, Lehmann R, Oberemm A, Schwaiger J, Segner H, Schüürmann G, Traunspurger W (2001): The project VALIMAR (VALidation of bioMARkers for the assessment of small stream pollution): objectives, experimental design, summary of the results, and recommendations for the application of biomarkers in risk assessment. J Aquat Ecosys Stress Recov 8, 161–178CrossRefGoogle Scholar
  74. Ulrich M, Schulze T, Leist E, Glaß B, Maier M, Maier D, Braunbeck T, Hollert H (2002): Ökotoxikologische Untersuchung von Sedimenten und Schwebstoffen: Abschätzung des Gefährdungspotenzials für Trinkwasser und Korrelation verschiedener Expositionspfade (Acetonischer Extrakt, Natives Sediment) im Bakterienkontakttest und Fischeitest. UWSF — Z Umweltchem Ökotox 14, 132–137Google Scholar
  75. Wang (1999): Pore water toxicity testing: does it make sense? SETAC Europe News 10, 6-7 Weishaar D, Gossrau E, Faderl B (1975): Normbereiche von alpha-HBDH, LDH, AP und LAP bei Messung mit substratoptimierten Testansätzen. Med Welt 26, 387–390Google Scholar
  76. Wenning R, Ingersoll C (2002): Summary of the SETAC Pellston Workshop on Use of Sediment Quality Guidelines and Related Tools for the Assessment of Contaminated Sediments;. 17–22 August 2002; Fairmont, Montana, USA. Society of Environmental Toxicology and Chemistry (SETAC). Pensacola FL, USA. online: http://www.setac.org/files/SOGSummary.pdfGoogle Scholar
  77. Wenzel A, Nendza M, Hartmann P, Kanne R (1997): Test battery for the assessment of aquatic toxicity. Chemosphere 35, 307–322CrossRefGoogle Scholar
  78. Westerlund L, Billsson K, Andersson PL, Tysklind M, Olsson PE (2000): Early life-stage mortality in zebrafish (Danio rerio) following maternal exposure to polychlorinated biphenyls and estrogen. Environ Toxicol Chem 19, 1582–1588CrossRefGoogle Scholar
  79. Wiegand C, Pflugmacher S, Giese M, Frank H, Steinberg C (2000): Uptake, toxicity, and effects on detoxification enzymes of atrazine and trifluoroacetate in embryos of zebrafish. Ecotoxicol Environ Safety 45, 122–31CrossRefGoogle Scholar
  80. Wolf K, Quimby MC (1962): Established eurythermic line of fish cells in vitro. Science 135, 1065–1066CrossRefGoogle Scholar
  81. Zabel EW, Walker MK, Hornung MW, Clayton MK, Peterson RE (1995): Interactions of polychlorinated dibenzo-p-dioxin, dibenzofuran, and biphenyl congeners for producing rainbow trout early life stage mortality. Toxicol Appl Pharmacol 134, 204–213CrossRefGoogle Scholar
  82. Zahn T, Hauck C, Holzschuh J, Braunbeck T (1995): Acute and sublethal toxicity of seepage waters from garbage dumps to permanent cell lines and primary cultures of hepatocytes from rainbow trout (Oncorhynchus mykiss): A novel approach risk assessment for chemicals and chemical mixtures. Zbl Hyg 196, 455–479Google Scholar
  83. Zahn T, Hollert H, Braunbeck T (1996): Vergleich der Zytotoxizität von umweltrelevanten Chemikalien bei isolierten Hepatocyten aus der Regen- bogenforelle und S9-supplementierten RTG-2-Zellen. Verh Dtsch Zool Ges 89. 1, 332 (in German)Google Scholar

Copyright information

© Ecomed Publishers 2003

Authors and Affiliations

  • Henner Hollert
    • 1
  • Steffen Keiter
    • 1
  • Natalie König
    • 1
  • Marc Rudolf
    • 1
  • Markus Ulrich
    • 1
  • Thomas Braunbeck
    • 1
  1. 1.Department of ZoologyUniversity of HeidelbergHeidelbergGermany

Personalised recommendations