Skip to main content

Advertisement

Log in

Bioenergy to save the world

Producing novel energy plants for growth on abandoned land

  • Discussion Article
  • Area 5.2 · GMOs, Bio-Products, Bio-Processing
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Background and Aim

Following to the 2006 climate summit, the European Union formally set the goal of limiting global warming to 2 degrees Celsius. But even today, climate change is already affecting people and ecosystems. Examples are melting glaciers and polar ice, reports about thawing permafrost areas, dying coral reefs, rising sea levels, changing ecosystems and fatal heat periods. Within the last 150 years, CO2 levels rose from 280 ppm to currently over 400 ppm. If we continue on our present course, CO2 equivalent levels could approach 600 ppm by 2035. However, if CO2 levels are not stabilized at the 450–550 ppm level, the consequences could be quite severe. Hence, if we do not act now, the opportunity to stabilise at even 550 ppm is likely to slip away. Long-term stabilisation will require that CO2 emissions ultimately be reduced to more than 80% below current levels. This will require major changes in how we operate.

Results

Reducing greenhouse gases from burning fossil fuels seems to be the most promising approach to counterbalance the dramatic climate changes we would face in the near future. It is clear since the Kyoto protocol that the availability of fossil carbon resources will not match our future requirements. Furthermore, the distribution of fossil carbon sources around the globe makes them an even less reliable source in the future. We propose to screen crop and non-crop species for high biomass production and good survival on marginal soils as well as to produce mutants from the same species by chemical mutagenesis or related methods. These plants, when grown in adequate crop rotation, will provide local farming communities with biomass for the fermentation in decentralized biogas reactors, and the resulting nitrogen rich manure can be distributed on the fields to improve the soil.

Discussion

Such an approach will open new economic perspectives to small farmers, and provide a clever way to self sufficient and sustainable rural development. Together with the present economic reality, where energy and raw material prices have drastically increased over the last decade, they necessitate the development and the establishment of alternative concepts.

Conclusions

Biotechnology is available to apply fast breeding to promising energy plant species. It is important that our valuable arable land is preserved for agriculture. The opportunity to switch from low-income agriculture to biogas production may convince small farmers to adhere to their business and by that preserve the identity of rural communities.

Perspectives

Overall, biogas is a promising alternative for the future, because its resource base is widely available, and single farms or small local cooperatives might start biogas plant operation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Abo-Hegazi AMT, Shaheen AM (1991): Use of mutations to improve cotton plants as an oil and protein source without affecting the seed cotton yield. Joint FAO/IAEA Div Nuclear Tech in Food and Agriculture, Vienna 2, 183–187

    Google Scholar 

  • Abraham ER, Ramachandran S, Ramalingam V (2007): Biogas: Can it be an important source of energy? Env Sci Pollut Res 14(1) 67–71

    Article  Google Scholar 

  • Alibert G, Aslane-Chanabé C, Burrus M (1994): Sunflower tissue and cell cultures and their use in biotechnology. Plant Physiol Bioch 32(1) 31–44

    CAS  Google Scholar 

  • Barac T, Borremans B, Provoost A, Oeyen L, Colpaert JV, Vangronsveld J, Taghavi S, van der Lelie D (2004): Engineered endophytic bacteria improve phytoremediation of water-soluble volatile organic pollutants. Nature Biotech 22, 583–588

    Article  CAS  Google Scholar 

  • Bausch WC, Delgado JA (2003): Ground-based sensing of plant nitrogen status in irrigated corn to improve nitrogen management. In: VanToai T et al. (eds), Digital imaging and spectral techniques: applications to precision agriculture and crop physiology, ASA Spec Publ. 66. ASA, CSSA, SSSA, Madison, WI., pp 145–157

    Google Scholar 

  • Bhat MG, Dani RG (1993): Improvement in productivity and oil content of cotton (Gossypium hirsutum L.) cultivars through induced polygenic mutations. J Cotton Res Develop 7(1) 9–18

    Google Scholar 

  • Bojinov B, Lacape JM (2003): Molecular markers for DNA-fingerprinting in cotton. Proceedings World Cotton Research Conference-3, 9–13 March, Cape Town, Republic of South Africa

  • Bojinov B, Vassilev A, Dimitrova L (2000): Comparative studies on the photosynthetic activity of two cotton varieties — Chirpan 603 (G. hirsutum L.) and C-6037 (G. barbadense L.) under severe drought and temperature stress. Plant Sci. (Blg) XXXVII(7) 452–458

    Google Scholar 

  • Bueno P, Piqueras A (2002): Effect of transition metals on stress, lipid peroxidation and antioxidant enzyme activities in tobacco cell cultures. Plant Growth Regulation 36(2) 161–167

    Article  CAS  Google Scholar 

  • Chandrappa HM (1982): Mutagenesis in sunflower (Helianthus annuus L). Thesis Abstr. 8, 256–257. In: Schuster WH, (ed) Die Züchtung der Sonnenblumen (Helianthus annuus L.) Advances in Plant Breeding 14, suppl. to J Plant Breeding, Parey, Berlin and Hamburg, pp 155

  • Dat J, Vandenabeele S, Vranova E, Van Montagu M, Inze D, Van Breusegem F (2000): Dual action of the active oxygen species during plant stress response. Cell Mol Life Sci 57, 779–795

    Article  CAS  Google Scholar 

  • Drake W (1983): Biomass tobacco as animal feed & energy base. Cultivators Research Service, Tesuque, N.M.

  • EREC 2006 — Position paper. European Renewable Energy Council 〈www.erec-renewables.org〉

  • Foyer CH, Noctor G (2005): Oxidant and antioxidant signalling in plants: a re-evaluation of the concept of oxidative stress in a physiological context. Plant Cell Environ 28, 1056–1071

    Article  CAS  Google Scholar 

  • Fränzle S, Markert B (2007): Metals in biomass. From the biological system of elements to reasons of fractionation and element use. Env Sci Pollut Res 14(6) 404–413

    Article  CAS  Google Scholar 

  • Gallego SM, Benavides MP, Tomaro ML (1996): Effect of heavy metal ion excess on sunflower leaves: Evidence for involvement of oxidative stress. Plant Science 121(2) 151–159

    Article  CAS  Google Scholar 

  • Gaugitsch H (2004): A differentiated assessment of the future of biotechnology. Env Sci Pollut Res 11(3) 141–142

    Google Scholar 

  • Haber W (2007): Energy, food, and land — The ecological traps of humankind. Env Sci Pollut Res 14(6) 359–365

    Article  Google Scholar 

  • Hall JL (2002): Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53, 1–11

    Article  CAS  Google Scholar 

  • Herrera MA, Slamanka CP, Barea JM (1993): Inoculation of woody legumes with selected arbuscular mycorrhizal fungi and rhizobia to recover desertified Mediterreanean ecosytems. Appl Env Microbiol 59, 129–133

    Google Scholar 

  • Herzig R, Guadagnini M, Erisman KH, Müller-Schärer H (1997): Chancen der Phytoextraktion. Sanfte Bodendekontamination von Schwermetallen mit Hilfe biotechnisch verbesserter Akkumulatorpflanzen. TerraTech 2, 49–52

    Google Scholar 

  • Jain SM (1998): Plant biotechnology and mutagenesis for sustainable crop improvement. In: Behl RK, Singh DK, Lodhi GP (eds), Crop improvement for stress tolerance, pp 218–232, CCSHAU, Hissar & MMB, New Delhi, India

    Google Scholar 

  • Kiani SP, Grieu P, Maury P (2007): Genetic variability for physiological traits under drought conditions and differential expression of water stress-associated genes in sunflower (Helianthus annuus L.). Theor Appl Genet 114(2) 193–207

    Article  CAS  Google Scholar 

  • Kübler I (1984): Veränderungen verschiedener Inhaltsstoffe in einzelnen Sonnenblumenfrüchten nach mutagener Behandlung in M2 und M3. Fette-Seifen-Anstrichmittel 2, 62–70

    Article  Google Scholar 

  • Lacape JM, Nguyen TB, Thibivilliers S, Bojinov B, Courtois B, Cantrell RG, Burr B, Hau B (2003): A combined RFLP-SSRAFLP map of tetraploid cotton based on a Gossypium hirsutum x Gossypium barbadense backcross population. Genome 46, 612–626

    Article  CAS  Google Scholar 

  • Laitha K, Marshal JD (1994): Sources of variation in the stable isotope composition of plants. In: Lahjta K, Michener RM (eds), Stable isotopes in ecology and environmental science, pp 1–21, Blackwell, Oxford

    Google Scholar 

  • Liao C, Wu C, Yanyongjie HH (2004): Chemical elemental characteristics of biomass fuels in China. Biomass and Bioenergy 27, 119–130

    Article  CAS  Google Scholar 

  • Lodewyckx C, Taghavi S, Mergeay M, Vangronsveld J, Clijsters H, van der Lelie D (2001): The effect of recombinant heavy metal resistant endophytic bacteria in heavy metal uptake by their host plant. Int J Phytorem 3, 173–187

    Article  CAS  Google Scholar 

  • Long RC (1984): Edible tobacco protein. Crops and Soils Magazine, pp 13–15

  • Ma JF, Tamai K, Ichii M, Wu GF (2002): A rice mutant defective in Si uptake. Plant Physiol 130, 2111–2117

    Article  CAS  Google Scholar 

  • Maluszynski M, Ahloowalia BS, Sigurbjörnsson B (1995): Application of in vivo and in vitro mutation techniques for crop improvement. Euphytica 85, 303–315

    Article  Google Scholar 

  • Markard J, Buhler J, Madlener R, Truffler B, Umbach-Daniel A (2004): Development and diffusion of anaerobic digestion plants in Switzerland and Austria — Interaction of local regional and national innovation strategies. In: Internat Energiewirtschaftstagung, TU Wien ‘Energiesysteme der Zukunft’ (IEWT 2005), 16.–18.02.2005, Vienna

  • Mastretta C, Barac T, Vangronsveld J, Newman L, Taghavi S, van der Lelie D (2006) Endophytic bacteria and their potential application to improve the phytoremediation of contaminated environments. Biotechnology and Genetic Engineering 23, 175–207

    CAS  Google Scholar 

  • Messner B, Schröder P (1999): Burst amplifying system in cell suspension cultures of spruce (Picea abies): Modulation of elicitor-induced release of hydrogen peroxide (oxidative burst) by ionophores and salicylic acid. Appl Bot 73, 6–10

    CAS  Google Scholar 

  • Mittler R (2002): Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 7, 405–410

    Article  CAS  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegm F (2004): Reactive oxygen gene network of plants. TiPS 9, 490–498

    CAS  Google Scholar 

  • Mohammed MH, Markert B (2006): Toxicity of heavy metals on Scenedesmus quadricauda (Turp.) de Brebisson in batch cultures. Env Sci Pollut Res 13, 98–104

    Article  CAS  Google Scholar 

  • Navarro S, Dziewatkoski M, Enyedi A (1999): Isolation of cadmium excluding mutants of Arabidopsis thaliana using a vertical mesh transfer system and ICP-MS. J Env Sci Health 34, 1797–1813

    Google Scholar 

  • Nawrot M, Szarejko I, Maluszynski M (2001): Barley mutants with increased tolerance to aluminium toxicity. Euphytica 120, 345–356

    Article  CAS  Google Scholar 

  • Nehnevajova E, Herzig R, Erismann KH, Schwitzguébel JP (2007): In vitro breeding of Brassica juncea L. to enhance metal accumulation and extraction properties. Plant Cell Rep 26(4) 429–437

    Article  CAS  Google Scholar 

  • Nehnevajova E, Herzig R, Federer G, Erismann KH, Schwitzguébel JP (2007): Chemical mutagenesis — An efficient technique to enhance metal accumulation and extraction in sunflowers. Int J Phytorem 9, 149–165

    Article  CAS  Google Scholar 

  • Osorio J, Fernández-Martínez J, Mancha M, Garcés R (1995): Mutant sunflowers with high concentration of saturated fatty acids in the oil. Crop Sci 35, 739–742

    CAS  Google Scholar 

  • Parr JF, Rapendick RI, Yangberg IG, Meyer RE (1990): Sustainable Agriculture in the United States. In: Edwards CA, Lal R, Madden P, Miller RH, House G (eds), Sustainable Agricultural Systems

  • Pinter PJ, Hatfield JL, Schepers JS, Barnes EM, Moran MS, Daughtry CS, Upchurch DR (2003): Remote sensing for crop management. Photogrammetric Engineering and Remote Sensing 69(6) 647–664

    Google Scholar 

  • Putun E, Uzun BE, Putun AE (2006): Production of bio-fuels from cottonseed cake by catalytic pyrolysis under steam atmosphere. Biomass & Bioenergy 30, 592–598

    Article  CAS  Google Scholar 

  • Rabl A, Benoist A, Dron D, Peuportier B, Spadaro JV Zoughaib A (2007): How to Account for CO2 Emissions from Biomass in an LCA. Int J LCA 12(5) 281

    Google Scholar 

  • Requenam BN, Jimenez I, Toro M, Barea JM (1997): Interactions between plant-growth promoting rhizobacteria (PGPR), arbuscular mycorrhizal fungi and Rhizobium spp. In the rhizosphere of Anthyllis cyitisoides, a model legume for revegations in Mediterranean semi-arid ecosystems. New Phytol 136, 667–677

    Article  Google Scholar 

  • Rizhsky L, Liang H, Mittler R (2002): The combined effect of drought stress and heat shock on gene expression in tobacco. Plant Physiol 130, 1143–1151

    Article  CAS  Google Scholar 

  • Schröder P (2001): The role of glutathione and glutathione Stransferases in the adaptations of plants to xenobiotics. In: Grill D, Tausz M, DeKok LJ (eds), Significance of glutathione in plant adaptation to the environment. Handbook Series of Plant Ecophysiology. Kluwer Acad Publ, Boston, Dordrecht, London, pp 157–182

    Google Scholar 

  • Schröder P, Fischer C, Debus R, Wenzel A (2002): Reaction of detoxification mechanisms in suspension cultured spruce cells (Picea abies L. Karst.) to heavy metals in pure mixture and in soil eluates. Env Sci Pollut Res 10(4) 225–234

    Google Scholar 

  • Schröder P, Huber B, Munch JC (2004): Making modern agriculture sustainable: FAM Research Network on Agroecosystems. J Soils Sediments 3(4) 223–226

    Article  Google Scholar 

  • Schulz H, Eder B (2001): Biogas-Praxis. 2. Rev Staufen bei Freiburg, Ökobuch

  • Skirvin RM, Norton M, McPheeters KD (1993): Somaclonal variation: Has it proved useful for plant improvement? Acta Hort 336, 333–340

    Google Scholar 

  • Stamatiadis S, Christofides C, Tsadilas C, Samaras V, Schepers J (2006): Natural abundance of foliar 15N as an early indicator of nitrogen deficiency in fertilized cotton. J Plant Nutr 29, 113–125

    Article  CAS  Google Scholar 

  • Stamatiadis S, Taskos D, Tsadilas C, Christofides C, Tsadila E, Schepers JS (2006): Relation of ground-sensor canopy reflectance to biomass production and grape color in two Merlot vineyards. Am J Enol Vitic 57, 416–422

    Google Scholar 

  • Stamatiadis S, Tsadilas C, Schepers JS (2004): Real time crop sensors. In: Stamatiadis et al. (eds), Remote sensing for agriculture and the environment. Peripheral Publications, Larissa, Greece, pp 128–135

    Google Scholar 

  • Wei SH, Zhou QX (2006): Phytoremediation of cadmium-contaminated soils by Rorippa globosa using two-phase planting. Env Sci Pollut Res 13, 151–155

    Article  CAS  Google Scholar 

  • World Energy Outlook (2006): 〈www.IEA.org〉

  • Young AL (2004): The future of biotechnology in support of biobased industries-The US perspective. Env Sci Pollut Res (2) 71–72

  • Young AL (2003): Biotechnology for food, energy, and industrial products: New opportunities for bio-based products. Env Sci Pollut Res 10(5) 273–276

    Google Scholar 

  • Zhang J, Kirkham MB (1996): Antioxidant responses to drought in sunflower and sorghum seedlings. New Phytol 132(3) 361–373

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Schröder.

Additional information

This work was stimulated by discussions within COST Actions 837 and 859.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schröder, P., Herzig, R., Bojinov, B. et al. Bioenergy to save the world. Environ Sci Pollut Res 15, 196–204 (2008). https://doi.org/10.1065/espr2008.03.481

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1065/espr2008.03.481

Keywords

Navigation