Skip to main content

Advertisement

Log in

Multicompartmental fate of persistent substances

Comparison of predictions from multi-media box models and a multicompartment chemistry-atmospheric transport model

  • Feature: Persistence — Research Articles
  • Published:
Environmental Science and Pollution Research - International Aims and scope Submit manuscript

Abstract

Background, Aim and Scope

Modelling of the fate of environmental chemicals can be done by relatively simple multi-media box models or using complex atmospheric transport models. It was the aim of this work to compare the results obtained for both types of models using a small set of non-ionic and non-polar or moderately polar organic chemicals, known to be distributed over long distances.

Materials and Methods

Predictions of multimedia exposure models of different types, namely three multimedia mass-balance box models (MBMs), two in the steady state and one in the non-steady state mode, and one non-steady state multicompartment chemistry-atmospheric transport model (MCTM), are compared for the first time. The models used are SimpleBox, Chemrange, the MPI-MBM and the MPI-MCTM. The target parameters addressed are compartmental distributions (i.e. mass fractions in the compartments), overall environmental residence time (i.e. overall persistence and eventually including other final sinks, such as loss to the deep sea) and a measure for the long-range transport potential. These are derived for atrazine, benz-[a]-pyrene, DDT, α and γ-hexachlorocyclohexane, methyl parathion and various modes of substance entry into the model world.

Results and Discussion

Compartmental distributions in steady state were compared. Steady state needed 2–10 years to be established in the MCTM. The highest fraction of the substances in air is predicted by the MCTM. Accordingly, the other models predict longer substance persistence in most cases. The results suggest that temperature affects the compartmental distribution more in the box models, while it is only one among many climate factors acting in the transport model. The representation of final sinks in the models, e.g. burial in the sediment, is key for model-based compartmental distribution and persistence predictions. There is a tendency of MBMs to overestimate substance sinks in air and to underestimate atmospheric transport velocity as a consequence of the neglection of the temporal and spatial variabilities of these parameters. Therefore, the long-range transport potential in air derived from MCTM simulations exceeds the one from Chemrange in most cases and least for substances which undergo slow degradation in air.

Conclusions and Perspectives

MBMs should be improved such as to ascertain that the significance of the atmosphere for the multicompartmental cycling is not systematically underestimated. Both types of models should be improved such as to cover degradation in air in the particle-bound state and transport via ocean currents. A detailed understanding of the deviations observed in this work and elsewhere should be gained and multimedia fate box models could then be ‘tuned in’ to match better the results of comprehensive multicompartmental transport models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atkinson R, Guicherit R, Hites RA, Palm WU, Seiber JN, de Voogt P (1999): Transformations of tesicides in the atmosphere: A state of the art. Water Air Soil Poll. 115, 219–243

    Article  CAS  Google Scholar 

  • Bachmann A, Walet B, Wijnen B, de Bruin W, Huntjens JLM, Roelofsen W, Zehnder JB (1988): Biodegradation of α-and β-hexachlorocyclohexane in a soil. Appl Environ Microbiol 54, 143–149

    CAS  Google Scholar 

  • Barrie L, Yi Y, Lohmann U, Leaitch WR, Kasibhatla P, Roelofs GJ, Wilson J, McGovern F, Benkovitz C, Meliere MA, Law K, Prospero J, Kritz M, Bergmann D, Bridgeman C, Chin M, Christensen J, Easter R, Feichter J, Jeuken A, Kjellström E, Koch D, Land C, Rasch P (2001): A comparison of large scale atmospheric sulphate aerosol models COSAM: Overview and highlights. Tellus 53B, 615–645

    CAS  Google Scholar 

  • Batjes NH (1996): Total carbon and nitrogen in the soils of the world. Europ J Soil Sci 47, 151–163

    Article  CAS  Google Scholar 

  • Brandes LJ, den Hollander H, van de Meent D (1996): SimpleBox 2.0: A nested multimedia fate model for evaluating the environmental fate of chemicals. Report National Institute of Public Health and the Environment (RIVM) No. 719 101 029, Wageningen, the Netherlands

  • Breivik K, Wania F (2002): Evaluating a model of the historical behavior of hexachlorocyclohexanes in the Baltic Sea environment. Environ Sci Technol 36, 1014–1023

    Article  CAS  Google Scholar 

  • Brubaker WW, Hites RA (1998): OH reaction kinetics of gas-phase α-and γ-hexachlorocyclohexane and hexachlorobenzene. Environ Sci Technol 32, 766–769

    Article  CAS  Google Scholar 

  • Cess RD, Potter GL, Blanchet JP, Boer, GJ, del Genio AD, Déqué M, Dymnikov V, Galin V, Gates WL, Ghan SJ, Kiehl JT, Lacis AA, le Treut H, Li ZX, Liang XZ, McAvaney BJ, Meleshko VP, Mitchell JFB, Morcrette JJ, Randall DA, Rikus L, Roeckner E, Royer JF, Schlese U, Sheinin DA, Slingo A, Sokolov AP, Taylor KE, Washington WM, Wetherald RT, Yagai I, Zhang MH (1990): Intercomparison and interpretation of climate feedback processes in 19 atmospheric general circulation models. J Geophys Res 95, 16601–16615

    Article  Google Scholar 

  • DFG (1982): Deutsche Forschungsgemeinschaft, Kommission zur Prüfung von Rückständen in Lebensmitteln: Hexachlorcyclohexan-Kontamination — Ursachen, Situation, Bewertung. Mitteilung IX, Boldt, Boppard, Germany

  • Finizio A, Mackay D, Bidleman TF, Harner T (1997): Octanol-air partition coefficient as a predictor of partitioning of semi-volatile organic chemicals to aerosols. Atmos Environ 31, 2289–2296

    Article  CAS  Google Scholar 

  • Frische R, Klöpffer W, Esser G, Schönborn W (1982): Criteria for assessing the environmental behavior of chemicals: Selection and preliminary quantification. Ecotox Environ Safety 6, 283–293

    Article  CAS  Google Scholar 

  • Harner T, Kylin H, Bidleman TF, Strachan WMJ (1999): Removal of α-and γ-hexachlorocyclohexane in the eastern Arctic ocean. Environ Sci Technol 33, 1157–1164

    Article  CAS  Google Scholar 

  • Held H (2001): Semianalytical spatial ranges and persistencies of non-polar chemicals for reaction-diffusion type dynamics. In: Matthies M, Malchow H (eds), Integrative Systems Approaches to Natural and Social Dynamics — Systems Science. Springer, Berlin

    Google Scholar 

  • Hertwich EG (2001): Intermittent rainfall in dynamic multimedia fate modelling. Environ Sci Technol 35, 936–940

    Article  CAS  Google Scholar 

  • Hornsby AG, Wauchope DR, Herner AE (1996): Pesticide properties in the environment. Springer, New York

    Google Scholar 

  • Jaenicke R (1988): Aerosol physics and chemistry. Landolt-Börnstein Neue Serie 4b, 391–457

  • Junge CE (1977): Basic considerations about trace constituents in the atmosphere as related to the fate of global pollutants. In: Suffet IH (ed), Fate of pollutants in the air and water environments, Part I. Wiley, New York, pp 7–26

    Google Scholar 

  • Klecka G, Boethling B, Franklin J, Graham D, Grady L, Howard P, Kannan L, Larson R, Mackay D, Muir D, van de Meent D (eds) (2000): Criteria for Persistence and Long-Range Transport of Chemicals in the Environment. SETAC Press, Pensacola, USA

    Google Scholar 

  • Klöpffer W, Kohl EG (1993): Bunolecular OH-rate constants of organic compounds in solution. Part 2. Measurements in 1,2,2-trichlorotrifluoroethane using hydrogen peroxide as OH-source. Ecotox Environ Safety 26, 346–356

    Article  Google Scholar 

  • Klöpffer W (1994): Environmental hazard — Assessment of chemicals and products — 2. Persistence and degradability of organic chemicals. Environ Sci Pollut Res 1, 108–116

    Google Scholar 

  • Klöpffer W, Schmidt E (2001): A multi media load model for the Baltic Sea. Environ Sci Pollut Res 8, 180–188

    Google Scholar 

  • Klöpffer W, Schmidt E (2003): Comparative Determination of the Persistence of Semivolatile Organic Compounds (SOC) using SimpleBox 2.0 and Chemrange 1.0/2.1. Fresenius Environ Bull 12, 490–496

    Google Scholar 

  • Klöpffer W, Rippen G, Frische R (1982): Physico-chemical properties as useful tools for predicting the environmental fate of organic chemicals. Ecotox Environ Safety 6, 294–301

    Article  Google Scholar 

  • Koziol A, Pudykiewicz JA (2001): Global-scale environmental transport of persistent organic pollutants. Chemosphere 45, 1181–1200

    Article  CAS  Google Scholar 

  • Lammel G (2004): Effects of temporally averaging climate parameters on predicted multicompartmental fate of pesticides and POPs. Environ Poll 128, 291–302

    Article  CAS  Google Scholar 

  • Lammel G, Feichter J, Leip A (2001): Long-range transport and global distribution of semivolatile organic compounds: A case study on two modern agrochemicals. Report Max Planck Institute for Meteorology No 324, Hamburg, Germany, 44 pp

  • Lei YD, Wania F (2004): Is rain or snow a more efficient scavenger of organic chemicals? Atmos Environ 38, 3557–3571

    Article  CAS  Google Scholar 

  • Leip A, Lammel G (2004): Indicators for persistence and long-range transport potential as derived from multicompartment chemistry-transport modelling. Environ Poll 128, 205–221

    Article  CAS  Google Scholar 

  • Macdonald RW, Barrie LA, Bidleman TF, Diamond ML, Gregor DL, Semkin RG, Strachan WMJ, Li YF, Wania F, Alaee M, Alexeeva LB, Backus SM, Bailey R, Bewers JM, Gobeil C, Halsall CJ, Harnber T, Hoff JT, Jantunen LMM, Lockhart WL, Mackay D, Muir DCG, Pudykiewicz J, Reimer KJ, Smith JN, Stern GA, Schroeder WH, Waygemann R, Yunker MB (2000): Contaminants in the Canadian Arctic: 5 years of progress in understanding sources, occurrence and pathways. Sci Total Environ 254, 93–234

    Article  CAS  Google Scholar 

  • Mackay D (2001): Multimedia environmental models — The fugacity approach. 2nd ed, Lewis, Boca Raton, USA

    Google Scholar 

  • Mackay D, Paterson S (1991): Evaluating the multimedia fate or organic chemicals: A level III fugacity model. Environ. Sci Technol 25, 427–436

    Article  CAS  Google Scholar 

  • Moltmann J, Küppers K, Knacker T, Klöpffer W, Schmidt E, Renner I (1999): Verteilung persistenter Chemikalien in marinen Ökosystemen. Research Report No 29725528 for Umweltbundesamt, Berlin

  • Muir DCG, Teixeira C, Wania F (2004): Empirical and modeling evidence of regional atmospheric transport of current-use pesticides. Environ Toxicol Chem 23, 2421–2432

    Article  CAS  Google Scholar 

  • Münch J, Axenfeld F (1999): Datenbasis historischer Emissionen ausgewählter persistenter Stoffe. UFOPLAN #10402843, Umweltbundesamt Berlin, Germany

    Google Scholar 

  • Ngabe B, Bidleman TF, Falconer RL (1993): Base hydrolysis of α-and γ-hexachlorocyclohexanes. Environ Sci Technol 27, 1930–1933

    Article  CAS  Google Scholar 

  • Malanichev A, Mantseva E, Shatalov V, Strukhov A, Vulikh N (2004): Numerical evaluation of the polychlorinated biphenyls transport over the northern hemisphere. Environ Poll 128, 279–289

    Article  CAS  Google Scholar 

  • Rippen G (2000): Umweltchemikalien (CD-ROM edition No. 5/00). ecomed, Landsberg, Germany

    Google Scholar 

  • Scheringer M (1996): Persistence and spatial range as endpoints of an exposure-based assessment of organic chemicals. Environ Sci Technol 30, 1652–1659

    Article  CAS  Google Scholar 

  • Scheringer M (2002): Persistence and spatial range of environmental chemicals. New ethical and scientific concepts for risk assessment. Wiley-VCH, Weinheim, Germany

    Google Scholar 

  • Scheringer M, Held H, Stroebe M (2001): Chemrange 1.0 — A multimedia transport model for calculating persistence and spatial range of organic chemicals. Model-and Software Description, ETH Zurich

  • Scheringer M, Wania F (2003): Multimedia models of global transport and fate of persistent organic pollutants. In: Fiedler H (ed), Handbook of Environmental Chemistry. Springer, Berlin, pp 237–269

    Google Scholar 

  • Scheringer M, Stroebe M, Wania F, Wegmann F, Hungerbühler K (2004): The effect of export to the deep sea on the long-range transport potential of persistent organic pollutants. Environ Sci Pollut Res 11, 41–48

    Article  CAS  Google Scholar 

  • Schwarzenbach RP, Gschwend PM, Imboden DM (2002): Environmental Organic Chemistry, 2nd ed. Wiley, New York

    Google Scholar 

  • Semeena VS, Lammel G (2003): Effects of various scenarios upon entry of DDT and γ-HCH into the global environment on their fate as predicted by a multicompartment chemistry-transport model. Fresenius Environ Bull 12, 925–939

    CAS  Google Scholar 

  • Semeena VS, Feichter J, Lammel G (2005): Impact of the regional climate and substance properties on the fate and atmospheric long-range transport of persistent organic pollutants — Examples of DDT and γ-HCH. Atmos Chem Phys Discuss 5, 12569–12615

    Google Scholar 

  • Smit AAMFR, Leistra M, van den Berg F (1997): Estimation method for the volatilization of pesticides from fallow soil. Environmental Planning Bureau series 2, DLO Winand Staring Centre, Wageningen, the Netherlands, 107 pp.

    Google Scholar 

  • Smit AAMFR, Leistra M, van den Berg F (1998): Estimation method for the volatilization of pesticides from plants. Environmental Planning Bureau series 4, DLO Winand Staring Centre, Wageningen, the Netherlands, 101 pp

    Google Scholar 

  • Spivakovsky CM, Logan JA, Montzka SA, Balkanski YJ, Foreman-Fowler M, Jones DBA, Horowitz LW, Fusco A, Brenninkmeijer CAM, Prather MJ, Wofsy SC, McElroy MB (2000): Three-dimensional climatological distribution of tropospheric OH: Update and evaluation. J Geophys Res 105, 8931–8980

    Article  CAS  Google Scholar 

  • SRC (2000): Chemfate Database Syracuse Research Corporation. 〈http://esc.syrres.com

  • Stier P, Feichter J, Kinne S, Kloster S, Vignati E, Wilson J, Ganzeveld L, Tegen I, Werner M, Schulz M, Balkanski Y, Boucher O, Minikin A, Petzold A (2005): The aerosol-climate model ECHAM5-HAM. Atmos Chem Phys 5, 1125–1156

    CAS  Google Scholar 

  • Strand A, Hov O (1996): A model strategy for the simulation of chlorinated hydrocarbon distribution in the global environment. Water Air Soil Poll 86, 283–316

    Article  CAS  Google Scholar 

  • Textor C, Schulz M, Guibert S, Kinne S, Balkanski S, Bauer S, Berntsen T, Berglen T, Boucher O, Chin M, Dentener FJ, Diehl T, Easter R, Feichter J, Fillmore D, Ghan S, Ginoux P, Gong S, Grini A, Hendricks J, Horowitz L, Huang P, Isaksen ISA, Iversen T, Kloster S, Koch D, Kirkevåg A, Kristjansson JE, Krol M, Lauer A, Lamarque JF, Liu X, Montanaro V, Myhre G, Penner JE, Pitari G, Reddy S, Seland Ø, Stier P, Takemura T, Tie X (2006): Analysis and quantification of the diversities of aerosol life cycles within AeroCom. Atmos Chem Phys 6, 1777–1813

    Article  CAS  Google Scholar 

  • TGD (1996): European Commission Technical Guidance Document in Support of The Commissions Directive 93/67/EEC on Risk Assessment for the Notified Substances and the Commission Regulation (EC) 1488/94 on Risk Assessment for Existing Substances. European Chemicals Bureau, Ispra, Italy

    Google Scholar 

  • Vallack H, Bakker D, Brandt I, Brorström-Lundén E, Brouwer A, Bull K, Gough C, Guardans R, Holoubek I, Jansson B, Koch R, Kuylenstierna J, Lecloux A, Mackay D, McCutcheon P, Mocarelli P, Taalman R (1998): Controlling persistent organic pollutants — What next? Environ Toxicol Pharmacol 6, 143–175

    Article  CAS  Google Scholar 

  • Wania F, Mackay D (1993): Global fractionation and cold condensation of low volatility organochlorine compounds in polar regions. Ambio 22, 10–18

    Google Scholar 

  • Wania F, Persson J, di Guardo A, McLachlan M (2000): The POPCYC-LING-Baltic model — A non-steady state multicompartment mass balance model of the fate of persistent organic pollutants in the Baltic Sea environment. Norwegian Institute for Air Research Report No. NILU OR 10/2000, Kjeller, Norway

  • Whitman WG (1923): The two-film theory of gas absorption. Chem Metall Eng 29, 146–148

    CAS  Google Scholar 

  • Widmer SK, Olson JM, Koskinen WC (1993): Kinetics of atrazine hydrolysis in water. J Environ Sci Health 28B, 19–28

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard Lammel.

Additional information

ESS-Submission Editor: Prof. Dr. Michael Matthies (matthies@uos.de)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lammel, G., Klöpffer, W., Semeena, V.S. et al. Multicompartmental fate of persistent substances. Env Sci Poll Res Int 14, 153–165 (2007). https://doi.org/10.1065/espr2006.11.363

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1065/espr2006.11.363

Keywords

Navigation