Derivation of soil values for the path ‘Soil-Soil Organisms’ for metals and selected organic compounds using species sensitivity distributions

  • Stephan Jänsch
  • Jörg Römbke
  • Hans-Joachim Schallnaß
  • Konstantin Terytze
Research Article Subject Area 4.3: Regulatory Actions and Legislation on Testing Methods


Background, Aims and Scope

According to the German Federal Soil Protection Act, the natural function of soil as a habitat for human beings, animals, plants and soil organisms is, among other things, to be protected by deriving soil values for important chemicals regarding their amounts in the environment, their persistence and/or their toxicity. This contribution presents the results of the mathematical derivation of such values for nine metals and ten organic substances from soil ecotoxicological effect values available in the literature for microbial processes, plants and soil invertebrates.

Material and Methods

Ecotoxicological data were mostly extracted from published papers and reports and had to originate from valid studies that were performed according to internationally standardised guidelines (e.g. ISO) or were otherwise well documented, plausible and performed according to accepted laboratory practice. As test results, both structural (i.e., effects on mortality, growth or reproduction) and functional (i.e., effects on microbial activity or organic matter breakdown) parameters were included. The derivation of soil values was performed using the distribution based extrapolation model (DIBAEX) and EC50s (Effective Concentration) as input data.


For 19 compounds, soil values could be calculated. In 18 of these 19 cases clear laboratory ecotoxicological effects (i.e., EC50 values) below the calculated soil value have been found in the literature.


In those few cases where a comparison with field studies is possible, effects have been observed in the same order of magnitude as the calculated soil values. A comparison with other similar approaches confirmed the plausibility of the calculated values.


The DIBAEX-method is a feasible and widely accepted method for deriving soil values from ecotoxicological input data. Data availability was already satisfactory for some substances, but other substances, especially organics, were only poorly covered. The soil values presented here were based on EC50 input data. However, depending on the protection level aimed at by using soil values in legislation, it might be appropriate to use other input data such as NOECs in the derivation process.

Recommendations and Perspectives

It is recommended to generate an appropriate number of data for further relevant substances by means of a test battery or multi-species approaches such as terrestrial model ecosystems. These tests should also consider the influence of the bioavailability of substances.

A final recommendation for legally binding soil values demands a plausibility check of the mathematically derived values. This should include a comparison with natural background concentrations, soil values for other pathways and soil values used in legislation of other countries. Finally, expert judgement always has to be considered.


DIBAEX-method EC50 hazardous concentration heavy metals microorganisms NOEC plants, soil invertebrates soil protection species sensitivity distributions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abdul Rida AMM, Bouché MB (1995): Earthworm contribution to ecotoxicological assessments. Acta Zool Fennica 196, 307–310Google Scholar
  2. Adema DMM, Henzen L (1989): A comparison of plant toxicities of some industrial chemicals in soil culture and soilless culture. Ecotox Envir Saf 18, 219–229CrossRefGoogle Scholar
  3. Aldenberg T, Jaworska JS (2000): Uncertainty of the hazardous concentration and fraction affected for normal species sensitivity distributions. Ecotox Environ Saf 46, 1–18CrossRefGoogle Scholar
  4. Außendorf M, Suttner T, Martin W (2000): Zur Problematik der Anwendung von Hintergrundwerten beim Vollzug des Bodenschutzrechts. UWSF — Z Umweltchem Ökotox 12, 279–283Google Scholar
  5. Bachmann G, Bannick C-G, Giese E, Glante F, Keine A, Konietzka R, Rück F, Schmidt S, Terytze K, Von Borries D (1997): Fachliche Eckpunkte zur Ableitung von Bodenwerten im Rahmen des Bundes-Bodenschutzgesetzes. In: Rosenkranz D, Bachman G, König W, Einsele G (eds), Handbuch des Bodenschutzes. E. Schmidt Verlag, Berlin. 24. Lfg. IX/97, Nr. 3500, 121 ppGoogle Scholar
  6. Bakker FM, Feije R, Grove AJ, Hoogendorn G, Jacobs G, Loose ED, Van Stratum P (2003): A laboratory test protocol to evaluate effects of plant protection products on mortality and reproduction of the predatory mite Hypoaspis aculeifer Canestrini (Acari: Laelapidae) in standard soil. J Soils Sediments 3, 73–77CrossRefGoogle Scholar
  7. BBodSchG (1998): Gesetz zum Schutz vor schädlichen Bodenveränderungen und zur Sanierung von Altlasten (Bundes-Bodenschutzgesetz). Bundesgesetzblatt I, 502 vom 17. März 1998Google Scholar
  8. BBodSchV (1999): Bundes-Bodenschutz-und Altlastenverordnung (BBodSchV) vom 12. Juli 1999. BGBL I, Nr, 36, 1554–1582Google Scholar
  9. Beck L, Dumpert K, Franke U, Mittmann H-W, Römbke J, Schönborn W (1988): Vergleichende ökologische Untersuchungen in einem Buchenwald nach Einwirkung von Umweltchemikalien. Spez Ber KFA Jülich 439, 548–701Google Scholar
  10. Bengtsson G, Tranvik L (1989): Critical metal concentrations for forest soil invertebrates. Water Air Soil Poll 47, 381–417CrossRefGoogle Scholar
  11. Bos R, Huijbregts M, Peijnenburg W (2005): Soil type-specific environmental quality standards for zinc in dutch soil. Integr Environ Assess Manag 1, 252–258CrossRefGoogle Scholar
  12. Bruus Pedersen M, Axelsen JA, Strandberg B, Jensen J, Attrill MJ (1999): The impact of a copper gradient on a microarthropod field community. Ecotoxicology 8, 467–483CrossRefGoogle Scholar
  13. Burton KW, Morgan E, Roig A (1984): The influence of heavy metals upon the growth of sitka-spruce in South Wales forests. II. Greenhouse experiments. Plant and Soil 78, 271–282CrossRefGoogle Scholar
  14. Campbell PJ, Arnold DJS, Brock TCM, Grandy NJ, Heger W, Heimbach F, Maund SJ, Streloke M (1999): Guidance Document on Higher-tier Aquatic Risk Assessment for Pesticides (HARAP). SETAC-Europe, Brussels, BelgiumGoogle Scholar
  15. Conder JM, Lanno RP (2000): Evaluation of surrogate measures of cadmium, lead, and zinc bioavailability to Eisenia fetida. Chemosphere 41, 1659–1668CrossRefGoogle Scholar
  16. Conrady D (1986): Ökologische Untersuchungen über die Wirkung von Umweltchemikalien auf die Tiergemeinschaft eines Grünlands. Pedobiologia 29, 273–284Google Scholar
  17. Coppola S, Dumontet S, Pontonio M, Basile G, Marino P (1988): Effect of cadmium-bearing sewage sludge on crop plants and microorganisms in two different soils. Agric Ecosys Envir 20, 181–194CrossRefGoogle Scholar
  18. DEFRA (2006): Pesticide Risk Assessment Tool. Available from 〈〉, accessed on 4 January 2006
  19. Doelman P, Haanstra L (1983): De invloed van zware metalen op de bodemmicroflora. Reeks Bodembescherming 20. Staatsuitgeverij Den HaagGoogle Scholar
  20. Dott W, Achazi R, Eisenträger A, Hund-Rinke K, Kördel W, Neumann-Hensel H, Pfeifer F, Römbke J, Wiesner J, Wilke B-M (2001): Biologische Testverfahren für Boden und Bodenmaterial. 7. Bericht des AK ‘Umweltbiotechnologie — Boden’. DECHEMA e.V., Frankfurt, 61 ppGoogle Scholar
  21. Elsgaard L, Petersen SO, Debosz K (2001a): Effects and risk assessment of Linear Alkylbenzene Sulfonates in agricultural soil. 1. Short-term effects on soil microbiology. Environ Toxicol Chem 20, 1656–1663CrossRefGoogle Scholar
  22. Elsgaard L, Petersen SO, Debosz K (2001b): Effects and risk assessment of Linear Alkylbenzene Sulfonates in agricultural soil. 2. Effects on soil microbiology as influenced by sewage sludge and incubation time. Environ Toxicol Chem 20, 1664–1672CrossRefGoogle Scholar
  23. EPPO (European Plant Protection Organization) (2003): EPPO Standards. Environmental Risk Assessment scheme for plant protection products. Bull. OEPP/EPPO 33, 195–208Google Scholar
  24. Escher BI, Hermens JLM (2004): Internal Exposure: Linking Bioavailability to Effects. Environ Sci Tech 38, 455A–462AGoogle Scholar
  25. Fairbrother A, Glazebrock PW, Van Straalen NM, Tarazona JV (2002): Test methods to determine hazards of sparingly soluble metal compounds in soils. SETAC Press, Pensacola, FL, USAGoogle Scholar
  26. Forbes VE, Calow P (2002): Species sensitivity distributions revisited: a critical appraisal. Human and Ecological Risk Assessment 8, 473–492Google Scholar
  27. Frampton GK, Jänsch S, Scott-Fordsmand JJ, Römbke J, Van den Brink PJ (2006): Effects of pesticides on soil invertebrates in laboratory studies: A review and analysis using species sensitivity distributions. Environ Toxicol Chem 25 (in press)Google Scholar
  28. Frampton GK, Römbke J, Jänsch S, Scott-Fordsmand JJ, Van den Brink PJ (2005): WEBFRAM 5: Development of a web-based pesticide risk assessment module for below-ground invertebrates. Report to the Department for Environment, Food and Rural Affairs (DEFRA), UK, 86 ppGoogle Scholar
  29. Greenslade P, Vaughan GT (2003): A comparison of Collembola species for toxicity testing of Australian soils. Pedobiologia 47, 171–179CrossRefGoogle Scholar
  30. Haimi J (2000): Decomposer animals and bioremediation of soils. Environ Pollut 107, 233–238CrossRefGoogle Scholar
  31. Heijbroek W, Van de Bund CF (1982): The influence of some agricultural practices on soil organisms and plant establishment of sugar beet. Neth J Pl Path 88, 1–17CrossRefGoogle Scholar
  32. Hommen U, Ratte H-T (1997): Künstliche Testsysteme zur Bewertung von PSM. Mathematische Modelle zur Effektabschätzung. UWSF — Z Umweltchem Ökotox 9, 267–272Google Scholar
  33. Hund-Rinke K, Koerdel W, Heiden S, Erb R (eds) (2002): Oekotoxikologische Testbatterien — Ergebnisse eines DBU-geförderten Ringtests. Erich Schmidt Verlag, BerlinGoogle Scholar
  34. Hund-Rinke K, Simon M (2005): Terrestrial toxicity of eight chemicals in a systematic approach. J Soils Sediments 5, 59–65CrossRefGoogle Scholar
  35. ISO (International Organization for Standardization) (1995): Soil quality — Determination of the effects of pollutants on soil flora. Part 2: Effects of chemicals on the emergence and growth of higher plants. ISO 11269-2. Geneva, SwitzerlandGoogle Scholar
  36. ISO (International Organization for Standardization) (1998): Soil Quality — Effects of pollutants on earthworms (Eisenia fetida). Part 2: Determination of effects on reproduction. ISO 11268-2. Geneva, SwitzerlandGoogle Scholar
  37. ISO (International Organization for Standardization) (1999): Soil Quality — Inhibition of reproduction of Collembola (Folsomia candida) by soil pollutants. ISO 11267. Geneva, SwitzerlandGoogle Scholar
  38. ISO (International Organization for Standardization) (2002a): Soil quality — Determination of the activity of the soil microflora using respiration curves. ISO 17155. Geneva, Switzerland.Google Scholar
  39. ISO (International Organization for Standardization) (2002b): Soil quality — Determination of potential nitrification — Rapid test by ammonium oxidation. ISO 15685. Geneva, SwitzerlandGoogle Scholar
  40. ISO (International Organization for Standardization) (2005): Soil quality — Guidance for the selection and application of methods for the assessment of bioavailability of contaminants in soil and soil materials. ISO/CD 17402. Geneva, SwitzerlandGoogle Scholar
  41. Jänsch S, Frampton GK, Römbke J, Van den Brink PJ, Scott-Fordsmand JJ (2006): Effects of pesticides on soil invertebrates in model ecosystem and field studies: A review and comparison with laboratory toxicity data. Environ Toxicol Chem 25 (in press)Google Scholar
  42. Jensen J, Løkke H, Holmstrup M, Krogh PH, Elsgaard L (2001): Effects and risk assessment of Linear Alkylbenzene Sulfonates in agricultural soil. 5. Probabilistic risk assessment of Linear Alkylbenzene Sulfonates in sludge-amended soils. Environ Toxicol Chem 20, 1690–1697CrossRefGoogle Scholar
  43. Klimisch H-J, Andreae M, Tillmann U (1997): A systematic approach for evaluating the quality of experimental toxicological and ecotoxicological data. Regulatory Toxicology and Pharmacology 25, 1–5CrossRefGoogle Scholar
  44. Knacker T, Van Gestel CAM, Jones SE, Soares AMVM, Schallnaß H-J, Förster B, Edwards CA (2004): Ring-testing and field-validation of a Terrestrial Model Ecosystem (TME) — An instrument for testing potentially harmful substances: Conceptual approach and study design. Ecotoxicology 13, 5–23CrossRefGoogle Scholar
  45. Lanno R, Wells J, Conder J, Bradham K, Basta N (2004): The bioavailability of chemicals in soil for earthworms. Ecotox Envir Safety 57, 39–47CrossRefGoogle Scholar
  46. Lock K, Janssen CR, De Coen W (2000): Multivariate test designs to assess the influence of zinc and cadmium bioavailability in soils on the toxicity to Enchytraeus albidus. Environ Toxicol Chem 19, 2666–2671CrossRefGoogle Scholar
  47. Lock K, De Schamphelaere KAC, Janssen CR (2002): The effect of lindane on terrestrial invertebrates. Arch Environ Contam Toxicol 42, 217–221CrossRefGoogle Scholar
  48. Løkke H, Van Gestel CAM (1998): Handbook of soil invertebrate toxicity tests. John Wiley & Sons, Chichester, UK, 281 ppGoogle Scholar
  49. Maltby L, Blake N, Brock TCM, Van den Brink PJ (2005): Insecticide species sensitivity distributions: The importance of test species selection and relevance to aquatic ecosystems. Environ toxicol Chem 24, 379–388CrossRefGoogle Scholar
  50. Mitra J, Rachu K (1998): Detrimental effects of soil residues of DDT on chillies (Capsicum annuum). Fresenium Environ Bull 7, 8–13Google Scholar
  51. Nagel I, Düwel O, Utermann J (2003): Hintergrundwerte für Schwermetalle in Böden Europas — Resümee einer europaweiten Datenauswertung. Bodenschutz 3, 68–73Google Scholar
  52. Peijnenburg W, Sneller E, Sijm D, Lijzen J, Traas T, Verbruggen E (2004): Implementation of bioavailability in standard setting and risk assessment. Envir Sci 11, 141–149Google Scholar
  53. Posthuma L, Suter GW, Traas TP (2002): Species sensitivity distributions in ecotoxicology. Lewis Publishers, Boca Raton, Florida, USAGoogle Scholar
  54. Römbke J, Jänsch S, Junker T, Pohl B, Scheffczyk A, Schallnass H-J (2006): Improvement of the applicability of ecotoxicological tests with earthworms, springtails and plants for the assessment of metals in natural soils. Environ Toxicol Chem 25, 776–787CrossRefGoogle Scholar
  55. Römbke J, Jänsch S, Schallnaß H-J, Terytze K (2005): Zusammenstellung und statistische Bearbeitung vorhandener Daten zur Wirkung von ausgewählten Verbindungen auf Bodenorganismen und Ableitung von Bodenwerten für den Pfad ‘Boden-Bodenorganismen’.. Report for the German Federal Environmental Agency (Umweltbundesamt), F+E-Vorhaben Nr. 202 73 266, 167 ppGoogle Scholar
  56. Rothstein B, Schröder D, Isermann K (2004): Variationen der Nährstoff-und Schwermetallgehalte in Böden. Dargestellt an ausgewählten Regionen in Eifel und Hunsrück. UWSF — Z Umweltchem Ökotox 16, 92–98Google Scholar
  57. Rüdel H, Hammel W, Wenzel A (2001): Verteilung und Wirkung von Chrom (VI) am Beispiel unterschiedlich belasteter Böden. UBA-Texte 20/01, 1–114Google Scholar
  58. Schmidt GH, Ibrahim NMM, Abdallah MD (1991): Toxicological studies in the long-term effects of heavy metals. Sci Tot Environ 107, 109–133CrossRefGoogle Scholar
  59. Scott-Fordsmand JJ, Pedersen MB (1995): Soil quality criteria for selected inorganic compounds. Danish Environmental Protection Agency, Working Report No. 48, 200 ppGoogle Scholar
  60. Smolders E, McGrath SP, Lombi E, Karman CC, Bernhard R, Cools D, Van den Brande K, Van Os B, Walrave N (2003): Comparison of toxicity of zinc for soil microbial processes between laboratory-contamined and polluted field soils. Environ Toxicol Chem 22, 2592–2598CrossRefGoogle Scholar
  61. Sorteberg A (1978): Effects of some heavy metals on oats in pot experiments with three different soil types. J Sci Agric Soc Finland 50, 317–334Google Scholar
  62. Spurgeon DJ, Hopkin SP (1999): Seasonal variation in the abundance, biomass and biodiversity of earthworms in soils contaminated with metal emissions from a primary smelting works. J Appl Ecol 36, 173–183CrossRefGoogle Scholar
  63. Swift MJ, Heal OW, Anderson JM (1979): Decomposition in terrestrial ecosystems. Studies in Ecology, Vol. 5. Blackwell Scientific Publishers, Oxford, UK, 372 ppGoogle Scholar
  64. Thompson AR, Sans WW (1974): Effects of soil insecticides in southwestern Ontario on non-target invertebrates: Earthworms in pasture. Environ Entomol 3, 305–308Google Scholar
  65. Tyler G, Balsberg Pahlson M, Bengtsson G, Baath E, Tranvik L (1989): Heavy-metal ecology of terrestrial plants, microorganisms and invertebrates. Water Air Soil Poll 47, 189–215CrossRefGoogle Scholar
  66. Van Vlaardingen P, Traas TP, Aldenberg T (2003): EtX-2000. Normal distribution based hazardous concentration and potentially affected fraction. Rijksinstituut voor Volksgezondheid en Milieu (RIVM), Bilthoven, The NetherlandsGoogle Scholar
  67. Vighi M, Finizio A, Villa S (2006): The Evolution of the Environmental Quality Concept: From the EPA Red Book to the European Water Framework Directive. Env Sci Pollut Res 13, 9–14CrossRefGoogle Scholar
  68. VROM (2002): Circulaire streefwaarden en interventiewaarden bodemsanierung. Directoraat-Generaal Milieubeheer, Directie Bodem. DBO/1999226863, 52 ppGoogle Scholar
  69. Wagner C, Løkke H (1991): Estimation of ecotoxicological protection levels from NOEC toxicity data. Wat Res 25, 1237–1242CrossRefGoogle Scholar
  70. Wilke B-M, Beylich A, Herrchen M, Kratz W, Marschner A, Necker U, Pieper S, Römbke J, Riepert F, Rück F, Terytze K, Throl C, Von der Trenck T (2002): Eckpunkte zur Beurteilung des Wirkungspfades Bodenverunreinigungen — Bodenorganismen. FA ‘Biologische Bewertung von Böden’ der FG 4 des BVB. In: Rosenkranz D, Bachman G, König W, Einsele G (eds), Handbuch des Bodenschutzes. E. Schmidt Verlag, Berlin, 35. Lfg I/02, Nr. 9310, 60 ppGoogle Scholar
  71. Wilke B-M, Hund-Rinke K, Pieper S, Römbke J, Marschner A (2004): Entwicklung von Prüfwertempfehlungen für ausgewählte Schadstoffe zum Schutz des Bodens als Lebensraum für Bodenorganismen. UWSF — Z Umweltchem Ökotox 16, 155–160Google Scholar

Copyright information

© ecomed publishers 2007

Authors and Affiliations

  • Stephan Jänsch
    • 1
  • Jörg Römbke
    • 1
  • Hans-Joachim Schallnaß
    • 1
  • Konstantin Terytze
    • 2
  1. 1.ECT Oekotoxikologie GmbHFlörsheimGermany
  2. 2.Freie Universität Berlin, FB GeowissenschaftenFU-ENVOG Organische UmweltgeochemieBerlinGermany

Personalised recommendations