Advertisement

The origin of stable halogenated compounds in volcanic gases

  • Matthias FrischeEmail author
  • Kristin Garofalo
  • Thor H. Hansteen
  • Reinhard Borchers
  • Jochen Harnisch
Research Articles

Abstract

Background

Halogenated compounds in the atmosphere are of great environmental concern due to their demonstrated negative effect on atmospheric chemistry and climate. Detailed knowledge of the emission budgets of halogenated compounds has to be gained to understand better their specific impact on ozone chemistry and the climate. Such data are also highly relevant to guide policy decisions in connexion with international agreements about protection of the ozone layer. In selected cases, the relevance of specific emission sources for certain compounds were unclear. In this study we present new and comprehensive evidence regarding the existence and relevance of a volcanic contribution of chlorofluorocarbons (CFCs), hydrofluorocarbons (HFCs), hydrochlorofluorocarbons (HCFCs), halons (bromine containing halo(hydro)carbons), and fully fluorinated compounds (e.g. CF4 and SF6) to the atmospheric budget.

Methods

In order to obtain new evidence of a volcanic origin of these compounds, we collected repeatedly, during four field campaigns covering a period of two years, gases from fumaroles discharging over a wide range of temperatures at the Nicaraguan subduction zone volcanoes Momotombo, Cerro Negro and Mombacho, and analysed them with very sensitive GC/MS systems.

Results and Discussion

In most fumarolic samples certain CFCs, HFCs, HCFCs, halons, and the fully fluorinated compounds CF4 and SF6 were present above detection limits. However, these compounds occur in the fumarole gases in relative proportions characteristic for ambient air.

Conclusion

This atmospheric fingerprint can be explained by variable amounts of air entering the porous volcanic edifices and successively being incorporated into the fumarolic gas discharges.

Recommendation and Outlook

Our results suggest that the investigated volcanoes do not constitute a significant natural source for CFCs, HFCs, HCFCs, halons, CF4, SF6 and NF3.

Keywords

Halogenated greenhouse gases Kyoto Protocol Montreal Protocol ozone depleting substances perfluorinated compounds stable halogenated compounds volcanic effects on atmospheric composition volcanic halocarbons 

References

  1. Butler JH, Battle M, Bender ML, Montzka SA, Clarke AD, Saltzman ES, Sucher CM, Severinghaus JP, Elkins JW (1999): A record of atmospheric halocarbons during the twentieth century from polar firn air. Nature 399, 749–755CrossRefGoogle Scholar
  2. Carr MJ, Feigenson MD, Patino LC, Walker JA (2003): Volcanism and geochemistry in Central America: Progress and problems. In: Eiler J (ed), Inside the Subduction Factory. Geophys Monogr Ser 138, 153–174, AGU, Washington, DCGoogle Scholar
  3. CCVG (Commission on the Chemistry of Volcanic Gases) (2004): 〈http://volcgas.unm.edu/2004newsletter.pdf
  4. Ellis DA, Mabury SA, Martin JW, Muir DCG (2001): Thermolysis of fluoropolymers as a potential source of halogenated organic acids in the environment. Nature 412, 321–324CrossRefGoogle Scholar
  5. Elming SA, Layer P, Ubieta K (2001): A paleomagnetic study and age determinations of Tertiary rocks in Nicaragua, Central America. Geophys J Internat 147(2) 294–309CrossRefGoogle Scholar
  6. Feigenson MD, Carr MJ, Maharaj SV, Juliano S, Bolge LL (2004): Lead isotope composition of Central American volcanoes: Influence of the Galapagos plume. Geochem Geophys Geosys 5, Q06001 〈DOI: 10.1029/2003GC000621Google Scholar
  7. Gaffney JS (1995): Volcanic CFCs. Environ Sci Technol 29(1) A8Google Scholar
  8. Galle B, Hansteen TH, Frische M, Garofalo K, Strauch W (2003): An estimate of the SO2 emissions from four volcanoes in Nicaragua, made using mini-DOAS spectroscopy. IAVCEI 8th Field Workshop Volc Gases, Abstr Vol 〈http://volcgas.unm.edu/Abstracts_Draft_11.doc
  9. Giggenbach WF (1975): A simple method for the collection and analysis of volcanic gas samples. Bull Volcanol 39, 132–145CrossRefGoogle Scholar
  10. Giggenbach WF, Tedesco D, Sulistiyo Y, Caprai A, Cioni R, Favara R, Fischer TP, Hirabayashi JI, Korzhinsky M, Martini M, Menyailov I, Shinohara H (2001): Evaluation of results from the fourth and fifth IAVCEI field workshops on volcanic gases, Vulcano island, Italy and Java, Indonesia. J Volcanol Geotherm Res 108(1–4) 157–172CrossRefGoogle Scholar
  11. Halmer M, Schmincke HU, Graf HF (2002): The annual volcanic gas input into the atmosphere, in particular into the stratosphere: A global data set for the past 100 years. J Volcanol Geotherm Res 115, 511–528CrossRefGoogle Scholar
  12. Harnisch J, Eisenhauer A (1998): Natural CF4 and SF6 on Earth. Geophys Res Let 25(13) 2401–2404CrossRefGoogle Scholar
  13. Harnisch J, Frische M, Borchers R, Eisenhauer A, Jordan A (2000): Natural fluorinated organics in fluorite and rocks. Geophys Res Let 27, 1883–1886CrossRefGoogle Scholar
  14. Harnisch J, Hoehne N (2002a): Comparison of emissions estimates derived from atmospheric measurements with national estimates of HFCs, PFCs and SF6. Environm Sci Pollut Res 9(5) 315–320Google Scholar
  15. Harnisch J, de Jager D, Gale J, Stobbe O (2002b): Halogenated compounds and climate change: Future emission levels and reduction costs. Environ Sci Pollut Res 9(6) 369–374CrossRefGoogle Scholar
  16. Hill BE, La Femina PC, Connor CB, Strauch W, Davoli G, Guevera G, Saballos A (1999): August 1999 eruption of Cerro Negro volcano, Nicaragua, successfully forecast using time-volume relationship. Eos Trans AGU 80(46) F1111Google Scholar
  17. Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (eds) (2001): Climate Change 2001: The Scientific Basis. 881 pp, Cambridge University Press, UKGoogle Scholar
  18. Inn ECY, Vedder JF, Condon EP (1981): Gaseous Constituents in the Plume from Eruptions of Mount St Helens. Science 211, 821–823CrossRefGoogle Scholar
  19. Isidorov VA, Zenkevich IG, Ioffe BV (1990): Volatile Organic Compounds in Solfataric Gases. J Atmos Chem 10, 329–340CrossRefGoogle Scholar
  20. Jordan A, Harnisch J, Borchers R, Le Guern F, Shinohara H (2000): Volcanogenic Halocarbons. Environ Sci Technol 34(6) 1122–1124CrossRefGoogle Scholar
  21. Jordan A (2003): Volcanic Formation of Halogenated Organic Compounds. In: Gribble GW (ed), The Handbook of Environmental Chemistry. vol 3, part p, 121–139, Springer-Verlag, Berlin, HeidelbergGoogle Scholar
  22. McBirney AR, Williams H (1965): Volcanic history of Nicaragua. Univ Calif Pub Geo Sci 55, 1–65Google Scholar
  23. McCulloch A, Ashford P, Midgley PM (2001): Historic emissions of fluorotrichloromethane (CFC-11) based on a market survey. Atmos Environ 35(26) 4387–4397CrossRefGoogle Scholar
  24. McKnight SB, Williams SN (1997): Old cinder cone or young composite volcano?: The nature of Cerro Negro, Nicaragua. Geology 25(4) 339–342CrossRefGoogle Scholar
  25. Menyailov IA, Nikitina LP, Shapar VN, Pilipenko VP (1986): Temperature increase and chemical change of fumarolic gases at Momotombo volcano, Nicaragua, in 1982–1985: Are these indicators of a possible eruption? J Geophys Res 91(B12) 12199–12214CrossRefGoogle Scholar
  26. Montegrossi G, Tassi F, Vaselli O, Buccianti A, Garofalo K (2001): Sulfur species in volcanic gases. Anal Chem 73(15) 3709–3715CrossRefGoogle Scholar
  27. Ohsawa S, Yusa Y, Oue K, Amita K (2000): Entrainment of atmospheric air into the volcanic system during the 1995 phreatic eruption of Kuju Volcano, Japan. J Volcanol Geotherm Res 96, 33–43CrossRefGoogle Scholar
  28. Rasmussen RA, Khalil MAK, Dalluge RW, Penkett SA, Jones B (1982): Carbonyl sulfide and carbon disulfide from the eruptions of Mount St Helens. Science 215(4533) 665–667CrossRefGoogle Scholar
  29. Rasmussen RA, Penkett SA, Prosser N (1979): Measurement of carbon tetrafluoride in the atmosphere. Nature 277, 549–551CrossRefGoogle Scholar
  30. Reeves CE, Sturges WT, Sturrock GA, Preston K, Oram DE, Schwander J, Mulvaney R, Barmola JM, Chappellez J (2005): Atmospheric trends of the halon gases from polar firn air. Atmos Chem Phys Diskuss 5, 937–960Google Scholar
  31. Saito G, Shinohara H, Kazahaya K (2002): Successive sampling of fumarolic gases at Satsuma-Iwojima and Kuju volcanoes, southwest Japan: Evaluation of short-term variations and precision of the gas sampling and analytical techniques. Geochem J 36(1) 1–20Google Scholar
  32. Schwandner FM, Seward TM, Gize AP, Hall PA, Dietrich VJ (2004): Diffuse emission of organic trace gases from the flank and crater of a quiescent active volcano (Vulcano, Aeolian Islands, Italy). J Geophys Res 109, D04301 〈DOI: 10.1029/2003JD003890Google Scholar
  33. Stoiber RE, Leggett DC, Jenkins TF, Murrmann RP, Rose WI (1971): Organic compounds in volcanic gas from Santiaguito volcano, Guatemala. Geol Soc Am Bull 82, 2299–2302CrossRefGoogle Scholar
  34. Symonds RB, Rose WI, Reed MH (1988): Contribution of Cl-and Fbearing gases to the atmosphere by volcanoes. Nature 334, 415–418CrossRefGoogle Scholar
  35. Symonds RB, Mizutani Y, Briggs PH (1996): Long-term geochemical surveillance of fumaroles at Showa-Shinzan dome, Usu volcano, Japan. J Volcanol Geotherm Res 73, 177–211CrossRefGoogle Scholar
  36. Tedesco D, Nagao K (1996): Radiogenic 4He, 21Ne and 40Ar in fumarolic gases on Vulcano: Implication for the presence of continental crust beneath the island. Earth Planet Sci Lett 144, 517–528CrossRefGoogle Scholar
  37. Thompson TM, Butler JH, Daube BC, Dutton GS, Elkins JW, Hall BD, Hurst DF, King DB, Kline ES, Lafleur BG, Lind J, Lovitz S, Mondeel DJ, Montzka SA, Moore FL, Nance JD, Neu JL, Romashkin PA, Scheffer A, Snible WJ (2004): 5. Halocarbons and other Atmospheric Trace Species. In: Schell RC, Buggle AM, Rosson RM, (eds), Climate Monitoring and Diagnostics Laboratory, Summary Report No 27, 2002–2003, 115–133, NOAA CMDL, Boulder, COGoogle Scholar
  38. van Wyk de Vries B, Francis PW (1997): Catastrophic collapse at stratovolcanoes induced by gradual volcano spreading. Nature 387, 387–390CrossRefGoogle Scholar
  39. Wahrenberger CM (1997): Some Aspects of the chemistry of volcanic gases. PhD thesis, 233 pp, ETH ZuerichGoogle Scholar
  40. Walther CHE, Flueh ER, Ranero CR, von Huene R, Strauch W (2000): Crustal structure across the pacific margin of Nicaragua: Evidence for ophiolitic basement and a shallow mantle sliver. Geophys J Int 141, 759–777CrossRefGoogle Scholar
  41. WMO (2003): Scientific Assessment of Ozone Depletion: 2002, Global Ozone Research and Monitoring Project — Report No 47. 498 pp, Geneva, 〈http://www.wmo.ch/web/arep/reports/o3_assess_rep_2002_front_page.html

Copyright information

© ecomed publishers (Verlagsgruppe Hüthig Jehle Rehm GmbH) 2006

Authors and Affiliations

  • Matthias Frische
    • 1
    • 2
    • 3
    Email author
  • Kristin Garofalo
    • 1
  • Thor H. Hansteen
    • 1
    • 2
  • Reinhard Borchers
    • 3
  • Jochen Harnisch
    • 4
  1. 1.SFB 574Christian-Albrechts-UniversityKielGermany
  2. 2.IFM-GEOMARLeibniz-Institute of Marine SciencesKielGermany
  3. 3.Max-Planck-Institute for Solar System ResearchKatlenburg/LindauGermany
  4. 4.Ecofys GmbHNuernbergGermany

Personalised recommendations