Advertisement

Assessment of land use impacts on the natural environment

Part 2: Generic characterization factors for local species diversity in Central Europe
  • Thomas KoellnerEmail author
  • Roland W. Scholz
Land Use in LCA (Subject Editor: Llorenç Milà i Canals)

Abstract

Goal, Scope and Background

Land use is an economic activity that generates large benefits for human society. One side effect, however, is that it has caused many environmental problems throughout history and still does today. Biodiversity, in particular, has been negatively influenced by intensive agriculture, forestry and the increase in urban areas and infrastructure. Integrated assessment such as Life Cycle Assessment (LCA), thus, incorporate impacts on biodiversity. The main objective of this paper is to develop generic characterization factors for land use types using empirical information on species diversity from Central Europe, which can be used in the assessment method developed in the first part of this series of paper.

Methods

Based on an extensive meta-analysis, with information about species diversity on 5581 sample plots, we calculated characterization factors for 53 land use types and six intensity classes. The typology is based on the CORINE Plus classification. We took information on the standardized α-diversity of plants, moss and mollusks into account. In addition, threatened plants were considered. Linear and nonlinear models were used for the calculation of damage potentials (EDP S). In our approach, we use the current mean species number in the region as a reference, because this determines whether specific land use types hold more or less species diversity per area. The damage potential calculated here is endpoint oriented. The corresponding characterization factors EDP S can be used in the Life Cycle Impact Assessment as weighting factors for different types of land occupation and land use change as described in Part 1 of this paper series.

Results

The result from ranking the intensity classes based on the mean plant species number is as expected. High intensive forestry and agriculture exhibit the lowest species richness (5.7–5.8 plant species/m2), artificial surfaces, low intensity forestry and non-use have medium species richness (9.4–11.1 plant species/m2) and low-intensity agriculture has the highest species richness (16.6 plant species/m2). The mean and median are very close, indicating that the skewedness of the distribution is low. Standard error is low and is similar for all intensity classes. Linear transformations of the relative species numbers are linearly transformed into ecosystem damage potentials (EDP linear S ). The integration of threatened plant species diversity into a more differentiated damage function \(EDP_{linear}^{S_{total} } \) makes it possible to differentiate between land use types that have similar total species numbers, but intensities of land use that are clearly different (e.g., artificial meadow and broad-leafed forest). Negative impact values indicate that land use types hold more species per m2 than the reference does. In terms of species diversity, these land use types are superior (e.g. near-to-nature meadow, hedgerows, agricultural fallow).

Discussion

Land use has severe impacts on the environment. The ecosystem damage potential EDP S is based on assessment of impacts of land use on species diversity. We clearly base EDP S factors on α-diversity, which correlates with the local aspect of species diversity of land use types. Based on an extensive meta-analysis of biologists’ field research, we were able to include data on the diversity of plant species, threatened plant species, moss and mollusks in the EDP S. The integration of other animal species groups (e.g. insects, birds, mammals, amphibians) with their specific habitat preferences could change the characterization factors values specific for each land use type. Those mobile species groups support ecosystem functions, because they provide functional links between habitats in the landscape.

Conclusions

The use of generic characterization factors in Life Cycle Impact Assessment of land use, which we have developed, can improve the basis for decision-making in industry and other organizations. It can best be applied for marginal land use decisions. However, if the goal and scope of an LCA requires it this generic assessment can be complemented with a site-dependent assessment.

Recommendations and Perspectives

We recommend utilizing the developed characterization factors for land use in Central Europe and as a reference methodology for other regions. In order to assess the impacts of land use in other regions it would be necessary to sample empirical data on species diversity and to develop region specific characterization factors on a worldwide basis in LCA. This is because species diversity and the impact of land use on it can very much differ from region to region.

Keywords

Generic assessment impacts land use LCA species diversity 

Supplementary material

11367_2006_Article_2292_MOESM1_ESM.pdf (79 kb)
Supplementary material, approximately 80 KB.

References

  1. Adam M (1995): Die Übergangszone von Buchen-und Fichtenwald in den nördlichen Kalkalpen — Klimatische, edaphische und vegetationskundliche Aspekte: Dargestellt am Beispiel des Tamina-und Calfeisentales (SG/GR). Cramer, BerlinGoogle Scholar
  2. Alard D, Podevigne I (2000): Diversity patterns in grassland along a landscape gradient in northwestern France. Journal of Vegetation Science 11, 287–294CrossRefGoogle Scholar
  3. Albracht R (1997): Zur Variabilität des Arteninventares verschiedener Bereiche von Fussballrasen, Golfplätzen und Mähweiden. Fachbereich Agrarwissenschaften und Umweltsicherung. University Gießen, GießenGoogle Scholar
  4. Archibald EEA (1949): The species character of plant communities. II. A quantitative approach. Journal of Ecology 37, 260–274CrossRefGoogle Scholar
  5. Arrhenius O (1921): Species and area. Journal of Ecology 9, 95–99CrossRefGoogle Scholar
  6. Balvanera P, Lott E, Segura G, Siebe C, Islas A (2002): Patterns of bdiversity in a Mexican tropical dry forest. Journal of Vegetation Science 13, 145–158CrossRefGoogle Scholar
  7. Barthlott W (1998): The uneven distribution of global biodiversity: A challenge for industrial and developing countries. In: Ehlers E, Krafft T (eds), German Global Change Research 1998. German National Committee on Global Change Research, Bonn, 36 ppGoogle Scholar
  8. Barthlott W, Biedinger N, Braun G, Feig F, Kier G, Mutke J (1999): Terminological and methodological aspects of the mapping and analysis of the global biodiversity. Acta Botica Fennica 162, 103–110Google Scholar
  9. BDM (2004): Biodiversity Monitoring Switzerland. Indicator Z9: Species Diversity in Habitats 〈www.biodiversitymonitoring.ch〉. BUWAL (Bundesamt für Umwelt, Wald und Landschaft), BernGoogle Scholar
  10. Bigler F, Jeanneret P, Lips A, Schüpbach B, Waldburger M, Fried P (1998): Wirkungskontrolle der Öko-Massnahmen: Biologische Vielfalt. Agrarforschung 5, 379–382Google Scholar
  11. Bruelheide H (1995): Die Grünlandgesellschaften des Harzes und ihre Standortbedingungen. Mit einem Beitrag zum Gliederungsprinzip auf der Basis von statistisch ermittelten Artengruppen. Cramer, Berlin, StuttgartGoogle Scholar
  12. BUWAL (2002): Rote Liste der gefährdeten Farn-und Blütenpflanzen der Schweiz. BUWAL (Swiss Agency for the Environment, Forests and Landscape), BernGoogle Scholar
  13. Callauch R (1981): Ackerunkraut-Gesellschaften auf biologischen und konventionellen Äckern in der weiteren Umgebung von Göttingen. Tuexenia. Mitteilungen der Floristisch-soziologischen Arbeitsgemeinschaft 1, 25–37Google Scholar
  14. Cowell S (1998): Environmental Life Cycle Assessment of Agricultural Systems: Integration into Decision-Making. Centre of Environmental Strategy. University Surrey, SurreyGoogle Scholar
  15. Daily GC (ed) (1997): Nature’s Services. Societal Dependence on Natural Ecosystems. Island Press, Washington, DC, Covelo, CaliforniaGoogle Scholar
  16. Döring-Mederake U (1991): Feuchtwälder im nordwestdeutschen Tiefland. Gliederung — Ökologie — Schutz. Erich Goltze, GöttingenGoogle Scholar
  17. Duelli P, Obrist MK (1998): In search of the best correlates for local organismal biodiversity in cultivated areas. Biodiversity and Conservation 7, 297–309CrossRefGoogle Scholar
  18. Ehrlich PR, Ehrlich AH (1981): Extinction. The causes and consequences of the disappearance of species. Random House, New YorkGoogle Scholar
  19. European Environmental Agency (2000): CORINE Land Cover. European Environmental Agency, LuxembourgGoogle Scholar
  20. Ewald J (1997): Die Bergmischwälder der Bayerischen Alpen: Soziologie, Standortbindung und Verbreitung. Cramer, BerlinGoogle Scholar
  21. Fahrig L, Jonsen I (1998): Effect of habitat patch characteristics on abundance and diversity of insects in an agricultural landscape. Ecosystems 1, 197–205CrossRefGoogle Scholar
  22. Flückiger PE (1999): Der Beitrag von Waldrandstrukturen zur regionalen Biodiversität. Dissertation, University Basel, OltenGoogle Scholar
  23. Giegrich J, Sturm K (1996): Operationalisierung der Wirkungskategorie Naturraumbeanspruchung. Institut für Energie und Umwelt (IFEU), HeidelbergGoogle Scholar
  24. Gleason HA (1922): On the relation between species and area. Ecology 3, 158–162CrossRefGoogle Scholar
  25. Gleason HA (1925): Species and area. Ecology 6, 66–74CrossRefGoogle Scholar
  26. Goedkoop M, Hofstetter P, Müller-Wenk R, Spriensma R (1998): The Eco-Indicator 98 explained. Int J LCA 3, 352–360Google Scholar
  27. Goedkoop M, Spriensma R (1999): The Eco-Indicator 99. A Damage Oriented Method for Life Cycle Impact Assessment. Methodology Report. Ministerie van Volkshuisvesting, Den HaagGoogle Scholar
  28. Grüttner A (1990): Die Pflanzengesellschaften und Vegetationskomplexe der Moore des westlichen Bodenseegebietes. Cramer, Berlin, StuttgartGoogle Scholar
  29. He F, Legendre P (1996): On species-area relations. American Naturalist 148, 719–737CrossRefGoogle Scholar
  30. Heck KL, van Belle G, Simberloff D (1975): Explicit calculation of the rarefaction diversity measurement and the determination of sufficient sample size. Ecology 56, 1459–1461CrossRefGoogle Scholar
  31. Hector A, Schmid B, Beierkuhnlein C, Caldeira MC, Diemer M, Dimitrakopoulos PG, Finn JA, Freitas H, Giller PS, Good J, Harris R, Högberg P, Huss-Danell K, Joshi J, Jumpponen A, Körner C, Leadley PW, Loreau M, Minns A, Mulder CPH, O’Donovan G, Otway SJ, Pereira JS, Prinz A, Read DJ, Scherer-Lorenzen M, Schulze E-D, Siamantziouras D, Spehn EM, Terry AC, Troumbis AJ, Woodward FI, Yachi S, Lawton HJ (1999): Plant diversity and productivity experiments in European grasslands. Science 286, 1123–1127CrossRefGoogle Scholar
  32. Heijungs R, Guinée J, Huppes G (1997): Impact Categories for Natural Resources and Land Use. Centre of Environmental Science (CML), LeidenGoogle Scholar
  33. Hurlbert SH (1971): The nonconcept of species diversity: A critique and alternative parameters. Ecology 52, 577–586CrossRefGoogle Scholar
  34. IUCN (2001): IUCN Red List. Categories and Criteria. Version 3.1. IUCN Species Survival Commission, Gland, Switzerland and Cambridge, UKGoogle Scholar
  35. Kisteneich S (1993): Die auenbegleitenden Schwarzerlen-und Stieleichen-Hainbuchenwälder des Bergischen Landes. Cramer, BerlinGoogle Scholar
  36. Koellner T (2000): Species-pool effect potentials (SPEP) as a yardstick to evaluate land use impacts on biodiversity. J Cl Prod 8, 293–311CrossRefGoogle Scholar
  37. Koellner T (2003): Land Use in Product Life Cycles and Ecosystem Quality. Peter Lang, Bern, Frankfurt a. M., New YorkGoogle Scholar
  38. Koellner T, Hersperger A, Wohlgemuth T (2004): Rarefaction method for assessing plant species diversity on a regional scale. Ecography 27, 532–544CrossRefGoogle Scholar
  39. Koellner T, Scholz RW (2007): Assessment of land use impacts on the natural environment. Part 1: An analytical framework for pure land occupation and land use change. Int J LCA 12(1) 16–23Google Scholar
  40. Lawton JH (1996): The role of species in ecosystems: aspects of ecological complexity and biological diversity. In: Abe T, Levin SA, Higashi M (eds), Biodiversity. An ecological perspective. Springer, New YorkGoogle Scholar
  41. Levin SA (2000): Multiple scales and the maintenance of biodiversity. Ecosystems 3, 498–506CrossRefGoogle Scholar
  42. Lindeijer E, van Kampen M, Fraanje P, van Dobben H, Nabuurs GJ, Schouwenberg E, Prins D, Dankers N (1998): Biodiversity and Life Support Indicators for Land Use Impacts in LCA. IVAM ER, IBNDLO, Wageningen, TexelGoogle Scholar
  43. Lindeijer E (2000): Biodiversity and life support impacts of land use in LCA. J Cl Prod 8, 313–319CrossRefGoogle Scholar
  44. Lips A, Dubois D et al. (1997): Belebte Umwelt. In: Wolfensberger U, Dinkel F (eds), Beurteilung nachwachsender Rohstoffe in der Schweiz in den Jahren 1993–1996. Vergleichende Betrachtung von Produkten aus ausgewählten NWR und entsprechenden konventionellen Produkten bezüglich ihrer Umweltwirkungen und Wirtschaftlichkeit. FAT Carbotech, Tänikon, BaselGoogle Scholar
  45. Lundberg J, Moberg F (2003): Mobile link organisms and ecosystem functioning: Implications for ecosystem resilience and management. Ecosystems 6, 87–98CrossRefGoogle Scholar
  46. MacArthur RH (1965): Patterns of species diversity. Biol. Rev. 40, 510–533CrossRefGoogle Scholar
  47. Magurran AE (1996): Ecological Diversity and its Measurement. Chapman & Hall, LondonGoogle Scholar
  48. Manz E (1997): Vegetation ehemals militärisch genutzter Übungsplätze und Flugplätze und deren Bedeutung für den Naturschutz. Tuexenia 17, 173–192Google Scholar
  49. Milà i Canals L, Bauer C, Depestele J, Dubreuil A, Freiermuth Knuchel R, Gaillard G, Michelsen O, Müller-Wenk R, Rydgren B (2007): Key elements in a framework for land use impact assessment within LCA. Int J LCA 12(1) 5–15CrossRefGoogle Scholar
  50. Müller-Wenk R (1998): Land Use — The Main Threat to Species. How to Include Land Use in LCA. Institute for Economy and the Environment (IWÖ), University St. Gallen, St. GallenGoogle Scholar
  51. Murmann-Kristen L (1987): Das Vegetationsmosaik im Nordschwarzwälder Waldgebiet. Cramer, BerlinGoogle Scholar
  52. Naeem S, Li S (1997): Biodiversity enhances ecosystem reliability. Nature 390, 507–509CrossRefGoogle Scholar
  53. Palmer MW (1990): The estimation of species richness by extrapolation. Ecology 71, 1195–1198CrossRefGoogle Scholar
  54. Peterson G, Allen CR, Holling CS (1998): Ecological resilience, biodiversity, and scale. Ecosystems 1, 6–18CrossRefGoogle Scholar
  55. Reidl K (1989): Floristische und vegetationskundliche Untersuchungen als Grundlage für den Arten-und Biotopschutz in der Stadt — dargestellt am Beispiel Essen. GHS Essen, EssenGoogle Scholar
  56. Ricotta C, Carranza ML, Avena G (2002): Computing β-diversity from species area curves. Basic and Applied Ecology 3, 15–18CrossRefGoogle Scholar
  57. Schenck R (2001): Land Use and Biodiversity Indicators for Life Cycle Impact Assessment. Int J LCA 6, 114–117Google Scholar
  58. Schläpfer F, Schmid B (1999): Expert estimates about effects of biodiversity on ecosystems processes and services. OIKOS 84, 346–352CrossRefGoogle Scholar
  59. Schreiber C (1995): Vergleich der Artenvielfalt von konventionellen-, IP-und Biobetrieben (auf verschiedenen Unterlagen in der kollinensubmontanen Stufe) im westlichen Aargauer Mittelland. Geobotanisches Institut und Institut für Agrarwirtschaft. ETH Zürich, ZürichGoogle Scholar
  60. Schulte W (1985): Florenanalyse und Raumbewertung im Bochumer Stadtbereich. Geographisches Institut der Ruhr-Universität Bochum, BochumGoogle Scholar
  61. Schulze ED, Mooney HA (1994): Ecosystem function of biodiversity. A summary. In: Schulze ED, Mooney HA (eds), Biodiversity and ecosystem function. Springer, Berlin, New York, 525 ppGoogle Scholar
  62. Shannon C (1948): A mathematical theory of communication. Bell Systems Technical Journal 27, 379–423Google Scholar
  63. Simberloff DS (1978): Use of rarefaction and related methods in ecology. Pages 150–165 in Dickson J Cairns KL, Jr., Livingston RJ, eds. Biological Data in Water Pollution Assessment: Quantitative and Statistical Analysis. American Society for Testing and Materials, PhiladelphiaGoogle Scholar
  64. Simpson EH (1949): Measurement of diversity. Nature 163, 688CrossRefGoogle Scholar
  65. Sukopp H (ed) (1990): Stadtökologie. Das Beispiel Berlin. Dietrich Reimer, BerlinGoogle Scholar
  66. Udo de Haes H, Jolliet O, Finnveden G, Hausschild M, Krewitt W, Müller-Wenk R (1999): Best available practice regarding impact categories and category indicators in Life Cycle Impact Assessment. Background document for the second working group on Life Cycle Impact Assessment of SETAC-Europe (WIA-2) Part A. Int J LCA 4, 66–74Google Scholar
  67. Udo de Haes HA. (2006): How to approach land use in LCIA or, how to avoid the Cinderella effect? Comments on ‘Key Elements in a Framework for Land Use Impact Assessment Within LCA’. Int J LCA 11, 219–221Google Scholar
  68. UNEP (1992): Convention on Biological Diversity. United Nations Environment Programme (UNEP), Nairobi, KenyaGoogle Scholar
  69. Vogtländer JG, Lindeijer E, Witte J-PM, Hendriks C (2004): Characterizing the change of land use based on flora: Application for EIA and LCA. J Cl Prod 12, 47–57CrossRefGoogle Scholar
  70. von Oheimb G (2003): Einfluss forstlicher Nutzung auf die Artenvielfalt und Artenzusammensetzung der Gefässpflanzen in norddeutschen Laubwäldern. Kovac, HamburgGoogle Scholar
  71. Werner F, Scholz RW. (2002): Ambiguities in decision-oriented life cycle inventories. The role of mental models. Int J LCA 7, 330–338Google Scholar
  72. Whittaker RH (1972): Evolution and measurement of species diversity. Taxon 21, 213–251CrossRefGoogle Scholar
  73. Whittaker RJ, Willis KJ, Field R (2001): Scale and species richness: towards a general, hierarchical theory of species diversity. Journal of Biogeography 28, 453–470CrossRefGoogle Scholar
  74. Wiertz van Dijk J, Latour JB (1992): MOVE: Vegetatie-module; de kans op voorlomen van 700 plantsoorten als functie van vocht, pH, nutienten en zout. RIVM, BilthovenGoogle Scholar
  75. Wittwer A, Meier R, Bolliger P, Wittwer J, Thomet P, Thomet E, Beyeler H (1997): Ökologischer Ausgleich. Erste Erfolgskontrollen in drei Regionen aus der Sicht der Förderung der Artenvielfalt. Bundesamt für Umwelt, Wald und Landschaft (BUWAL), BernGoogle Scholar
  76. Wohlgemuth T (1992): Die vegetationskundliche Datenbank. Schweiz Z Forstwes 143, 22–36Google Scholar
  77. Wohlgemuth T (1998): Modelling floristic species richness on a regional scale: A case study in Switzerland. Biodiversity and Conservation 7, 159–177CrossRefGoogle Scholar
  78. WSL/FNP. (without year): EDV-Flora der Schweiz 1.0. Eidgenössische Forschungsanstalt für Wald, Schnee und Landschaft (WSL/FNP), BirmensdorfGoogle Scholar
  79. Zerbe S (1999): Die Wald-und Forstgesellschaften des Spessarts mit Vorschlägen zu deren zukünftigen Entwicklung, AschaffenburgGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Swiss Federal Institute of Technology, Department of Environmental SciencesNatural and Social Science Interface (ETH-NSSI), ETH-Zentrum CHNZurichSwitzerland

Personalised recommendations