Journal of Soils and Sediments

, Volume 7, Issue 3, pp 143–146 | Cite as

Investigation of heavy metal concentrations on urban soils, dust and vegetables nearby a former smelter site in Mortagne du Nord, Northern France

  • Francis Douay
  • Hélène Roussel
  • Hervé Fourrier
  • Christophe Heyman
  • Gaëlle Chateau
Research Article Soils, Section 2: Global Change and Environmental Risk Assessment

Abstract

Environmental situations near former industrial sites like Mortagne du Nord (Northern France) in which the soil, dust and homegrown vegetables have been contaminated by heavy metals can represent a sanitary risk to the surrounding population. In order to evaluate the contamination level in different exposition media in this site, 26 urban topsoils, 17 dust and 38 vegetable samples were taken near the former zinc smelter site. All the observed levels on urban soil samples (except one) are over regional agricultural reference values for Cd and Pb. 45 % of the vegetable samples are over the European foodstuff limits and one dust sample taken in the school playground outdoor tarmac area exceeds the French limit in dust set up at 1,000 μg m−2 for Pb. The Cd and Pb levels fluctuate depending on the use of the ground (kitchen garden, lawn, courtyard) and its location. The lack of simple correlations between the distance from the former smelter site and the Pb concentrations on sampled soils let us think that human activities contributed in the local urban contamination. In this context, who is now responsible for the soil contamination and the human exposure?

Keywords

Cd dust heavy metal concentrations Pb population exposure smelter soils vegetables 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander PD, Alloway BJ, Dourado AM (2006): Genotypic variations in the accumulation of Cd, Cu, Pb and Zn exhibited by six commonly grown vegetables. Environ Pollut 144, 736–745CrossRefGoogle Scholar
  2. Baize D, Sterckeman T, Douay F, Jolivet C, Saby N, Ciesielski H, Arrouays D (2005): Levels of soil contamination in France by trace elements as assessed from total concentrations. International Workshop ‘Fate and Impact of Persistent Pollutants in Agroecosystems’, 10–12 March 2005, Institute of Soil Science and Plant Cultivation, PuBawy, Poland, 3 ppGoogle Scholar
  3. Cambier P (2001): Synthèse de travaux portant sur la pollution environmentale autour de la friche industrielle de Mortagne-du-Nord. Contribution au développement des méthodes d’investigation et de gestion des sites contaminés. Repport de Contrat entre le Ministère de l’Aménagement du Territoire et de l’Environment 5 (SRAE) et de l’INRA, 27 ppGoogle Scholar
  4. Davies BE (1978): Plant-available lead and other metals in British garden soils. Sci Total Environ 9, 243–262CrossRefGoogle Scholar
  5. Douay F, Roussel H, Pruvot C, Waterlot C (2006): Impact of a smelter closedown on metal contents of wheat cultivated in the neighbourhood. Env Sci Pollut Res 〈DOI: http://dx.doi.org/10.1065/espr2006.12.366
  6. Duggan MJ, Inskip MJ (1985): Childhood exposure to lead in surface dust and soil: A community health problem. Public Health Rev 13, 1–54Google Scholar
  7. European Commission (2002): Commission Regulation (EC) No 221/2002 of 6 February 2002 amending Regulation (EC) No 466/2001 setting maximum levels for certain contaminants in foodstuffsGoogle Scholar
  8. Finster ME, Gray KA, Binns HJ (2004): Lead levels of edibles grown in contaminated residential soils: A field survey. Sci Total Environ 320, 245–257CrossRefGoogle Scholar
  9. Godin P, Feinberg M, Ducauze C (1985): Modelling of soil contamination by airborne lead and cadmium around several emission sources. Environ Pollut Ser B 10, 97–114CrossRefGoogle Scholar
  10. Kachenko AG, Singh B (2006): Heavy metals contamination in vegetables grown in urban and metal smelter contaminated sites in Australia Water, Air, and Soil Poll 169, 101–123CrossRefGoogle Scholar
  11. Kuboi T, Noguchi A, Yazaki J (1986): Family-dependent cadmium accumulation characteristics in higher plants. Plant and Soil 92, 405–415CrossRefGoogle Scholar
  12. Lanphear BP, Matte TD, Rogers J, Clickner RP, Dietz B, Bornschein RL, Succop P, Mahaffey KR, Dixon S, Galke W, Rabinowitz M, Farfel M, Rohde C, Schwartz J, Ashley P, Jacobs DE (1998): The contribution of lead-contaminated house dust and residential soil to children’s blood lead levels. A pooled analysis of 12 epidemiologic studies. Environ Res 79, 51–68CrossRefGoogle Scholar
  13. Lecocq D (1997): Diagnostic de la pollution de la friche industrielle de Mortagne-du-Nord (59), II — Caractérisation des phases minérales porteuses à la microsonde électronique. Ecole des Mines de Paris, Centre d’informatique géologique, Armines, 1–35 ppGoogle Scholar
  14. NF X 31-147 (1996): Qualité des sols. Sols, sédiments. Mise en solution totale par attaque acide. AFNOR, Paris, 12 ppGoogle Scholar
  15. Norra S, Stüben D (2003): Urban soils. J Soils Sediments 3(4) 230–233CrossRefGoogle Scholar
  16. Peltola P, Astrom M (2003): Urban geochemistry: A multimedia and multielement survey of a small town in northern Europe. Environmental Geochemistry and Health 25, 397–419CrossRefGoogle Scholar
  17. Pruvot C, Douay F, Fourrier H, Waterlot C (2006): Risk assessment of human health in an area strongly contaminated by heavy metals. J Soils Sediments 6(4) 215–220CrossRefGoogle Scholar
  18. Sterckeman T, Douay F, Baize D, Fourrier H, Proix N, Schwartz C (2003): A typological approach for assessing pedo-geochemical contents of trace elements in soils. Proc 7th Inter Conf on the Biogeochem of Trace Elements, ‘Trace Elements of Natural Origin in Soils’, Uppsala, Sweden, June 15–19, 2003, pp 410–411Google Scholar
  19. Sterckeman T, Douay F, Proix N, Fourrier H, Perdrix E (2002): Assessment of the contamination of cultivated soils by eighteen trace elements around smelters in the north of France. Water Air Soil Poll 135, 173–194CrossRefGoogle Scholar
  20. Thiry M, Huet-Taillanter S, Schmitt JM (2002): La friche industrielle de Mortagne-du-Nord (59)-I-Prospection du site, composition des scories, hydrochimie, hydrologie et estimation des flux. Bulletin de la Societe Geologique de France 173, 369–381CrossRefGoogle Scholar
  21. USEPA (2001): Lead — Identification of dangerous levels of lead: FinalRule. United States Environmental Protection AgencyGoogle Scholar
  22. van Oort F, Gaultier JP, Hardy R, Bourennane H (2001): Dissemination and spatial variability of metal pollutants generated by past metallurgical activity of a zinc smelter in surrounding agricultural land (Mortagnedu-Nord, Northern France). ENSMP Mém Sc de la Terre 40, 157–160Google Scholar

Copyright information

© ecomed publishers 2007

Authors and Affiliations

  • Francis Douay
    • 1
  • Hélène Roussel
    • 1
  • Hervé Fourrier
    • 1
  • Christophe Heyman
    • 2
  • Gaëlle Chateau
    • 3
  1. 1.Laboratoire Sols et EnvironnementInstitut Supérieur d’AgricultureLilleFrance
  2. 2.Cellule Inter régionale d’Epidémiologie Nord PicardieLilleFrance
  3. 3.Direction Régionale des Affaires Sanitaires et SocialesLilleFrance

Personalised recommendations