Advertisement

Multidimensional risk analysis of antifouling biocides

  • Johannes RankeEmail author
  • Bernd Jastorff
Review Article

Abstract

In order to improve the orientation about the long-term sustainability of the use of the antifouling biocides tributyltin (TBT), copper, Irgarol® 1051, Sea-Nine™ 211 and zinc pyrithione, used for the protection of fouling in sea-going ships, the risks posed to the marine biosphere due to their use are evaluated. The newly presented method of risk analysis uses release rate, spatiotemporal range, bioaccumulation, bioactivity and uncertainty as 5 dimensions of ecotoxicological risk. For each dimension, a scoring procedure is briefly described. The resulting risk profiles of the antifouling biocides show characteristics of the different substances, but also indicate where further information is required. Application of the method is proposed as a decision support in the integrated development of products, informed purchasing and for regulatory purposes.

Keywords

Antifouling biocides copper fouling protection Irgarol 1051 risk analysis Sea-Nine 211 sustainable products tributyltin zinc pyrithione 

Abbreviations

Kd

Equilibrium coefficient for the distribution of substances between water and sediment

KOM

Equilibrium coefficient for the distribution between water and organic matter

EC50

Concentration, where 50% of the tested organisms show a defined effect after a certain exposure time

NOEC

No-observed-effect concentration

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Anonymous (1999): IMO to ban popular biocide. Environ Sci Tech 33: 11Google Scholar
  2. [2]
    EU (1998): Directive 98/8/EC of the European Parliament and of the Council of 16 February 1998 concerning the placing of biocidal products on the market. Official Journal of the European Communities 41, L 123Google Scholar
  3. [3]
    Luhmann, N. (1993): Risk: A sociological theory, Aldine de Gruyter, New YorkGoogle Scholar
  4. [4]
    Van Leeuwen, C. J.; Hermens, J. L. M. VanLeeuwen, Cornelius J. and Hermens, Josephus L. M. (Eds.) (1995): Risk Assessment of Chemicals, Kluwer Academic Publishers, DordrechtGoogle Scholar
  5. [5]
    EU (1996): Technical Guidance Document in Support of Commission Directive 93/67/EEC on Risk Assessment for New Notified Substances and Commission Regulation (EC) No 1488/94 on Risk Assessment for Existing Substances, Office for Official Publications of the European Communities, LuxembourgGoogle Scholar
  6. [6]
    EPA (1998): Guidelines for ecological risk assessment. EPA/630/ R-95/002F. U.S Environmental Protection Agency (EPA), Office of Research and Development (ORD), Cincinnati, OH, USAGoogle Scholar
  7. [7]
    Chapman, P. M.; Fairbrother, A.; Brown, D. (1998): A critical evaluation of safety (uncertainty) factors for ecological risk assessment. Environ Tox Chem 17: 99–108CrossRefGoogle Scholar
  8. [8]
    Mathes, K. (1997): Ökotoxikologische Wirkungsabschätzung — Das Problem der Extrapolation auf Ökosysteme. Umweltwiss Schadst Forsch 9: 17–23CrossRefGoogle Scholar
  9. [9]
    Scheringer, M. (1996): Persistence and spatial range as endpoints of an exposure-based assessment of organic chemicals. Environ Sci Tech 30: 1652–1659CrossRefGoogle Scholar
  10. [10]
    Scheringer, M. (1999): Persistenz und Reichweite von Umweltchemikalien, Wiley-VCH, Weinheim, S. 88CrossRefGoogle Scholar
  11. [11]
    SRC (1997): Improved Method for Estimating Bioconcentration Factor (BCF) from Octanol-Water Partition Coefficient. SRC TR-97-006 (3rd update). Syracuse Research Corporation (SRC), North Syracuse NY, USAGoogle Scholar
  12. [12]
    PSD/HSE (1998): Pesticides 1998: Your Guide to Approved Pesticides. Pesticide Safety Directorate (PSD) and Health and Safety Executive (HSE). The Stationary Office, LondonGoogle Scholar
  13. [13]
    Anderson, C. (1995): Tin vs. tin-free antifoulings. In: Protecting the Ship while Safeguarding the Environment. LondonGoogle Scholar
  14. [14]
    Callow, M. E.; Millner, P. A.; Evans, L. V. (1978): Organotin resistance in green seaweeds. In: Anonymous: Ninth International Seaweed Symposium, Santa Barbara, California, August 20, 1977. Science Press, Princeton, New JerseyGoogle Scholar
  15. [15]
    Champ, M. A.; Seligman, P. F. (1996): Research information requirements associated with the environmental fate and effects of organotin compounds. In: Champ, M. A.; Seligman, P. F. (Eds.): Organotin: Environmental Fate and Effects. Chapman & Hall, London, 601–614CrossRefGoogle Scholar
  16. [16]
    GDCh-Advisory Committee on Existing Chemicals of Environmental Relevance (BUA) (1994): Tributyltin oxide: Bis-[tributyltin]-oxide, S. Hirzel, StuttgartGoogle Scholar
  17. [17]
    KEMI (1997): Literature Survey on Ecotoxicology and Environmental Exposure of Organotin Compounds with Emphasis on Use in Antifouling Paints. National Chemicals Inspectorate Sweden (KEMI), Solna, SwedenGoogle Scholar
  18. [18]
    Fent, K. (1996): Ecotoxicology of organotin compounds. Crit Rev Ecotoxicol 26: 1–117Google Scholar
  19. [19]
    Evans, C. J.; Smith, P. J. (1975): Organotin-based antifouling systems. Journal of the Oil and Colour Chemists’s Association 58: 160–168Google Scholar
  20. [20]
    Schatzberg, P. (1996): Measurement and significance of the release rate for tributyltin. In: Champ, M. A.; Seligman, P. F. (Eds.): Organotin: Environmental Fate and Effects. Chapman & Hall, London, 383–403CrossRefGoogle Scholar
  21. [21]
    Seligman, P. F.; Adema, C. M.; Grovhoug, J.; Fransham, R.L.; Valkirs, A. O.; Stang, P. M. (1996): Persistence and fate of tributyltin in aquatic ecosystems. In: Champ, M. A.; Seligman, P. F. (Eds.): Organotin: Environmental Fate and Effects. Chapman & Hall, London, 429–458CrossRefGoogle Scholar
  22. [22]
    Laughlin Jr, R. B. (1996): Bioaccumulation of TBT by aquatic organisms. In: Champ, M. A.; Seligman, P. F. (Eds.): Organotin: Environmental Fate and Effects. Chapman & Hall, London, 331–355CrossRefGoogle Scholar
  23. [23]
    Hall Jr, L. W. (1998): An ecological risk assessment of tributyltin in the Chesapeake Bay watershed. Division of Environmental Chemistry Preprints of Extended Abstracts 38: 134–135Google Scholar
  24. [24]
    Bryan, G. W.; Gibbs, P. E.; Hugett, R. J.; Curtis, L. A.; Bailey, D. S.; Dauer, D. M. (1989): Effects of tributyltin pollution on the mud snail, Ilyanassa obsoleta, from the York River and Sarah Creek, Chesapeake Bay. Mar Poll Bull 20: 458CrossRefGoogle Scholar
  25. [25]
    Vetere, V. F.; Perez, M. C.; Romagnoli, R.; Stupak, M. E.; Del-Amo, B. (1997): Solubility and toxic effect of the cuprous thiocyanate antifouling pigment on barnacle larvae. J Coat Tech 69: 39–45CrossRefGoogle Scholar
  26. [26]
    EPA (1985): Ambient Water Quality Criteria for Copper — 1984. EPA/440/5-84-031. U.S. Environmental Protection Agency (EPA), Washington DC, USAGoogle Scholar
  27. [27]
    KEMI (1997): Supplement 1 to the ecotoxicological evaluation of copper in antifouling paints: Copper, cuprous oxide, cuprous thiocyanate. Solna, SwedenGoogle Scholar
  28. [28]
    KEMI (1992): Ecotoxicological evaluation of copper in antifouling paints: Copper, cuprous oxide, cuprous thiocyanate. Solna, SwedenGoogle Scholar
  29. [29]
    Sadiq, M. ( 1992): Toxic Metal Chemistry in Marine Environments, Marcel Dekker, New YorkGoogle Scholar
  30. [30]
    Bryan, G. W.; Lankreijer, R. M. (1992): Bioavailability, accumulation and effects of heavy metals in sediments with special reference to United Kingdom estuaries: A review. Environ Poll 76: 89–131CrossRefGoogle Scholar
  31. [31]
    Gerigk, U.; Schneider, U.; Stewen, U. (1998): The present status of TBT copolymer antifouling paints versus TBT-free technology. Division of Environmental Chemistry Preprints of Extended Abstracts 38: 91–94Google Scholar
  32. [32]
    Anonymous (1997): The world’s first tin-free hydrolysing self-polishing antifouling. Shipping World & Shipbuilder : 19–22Google Scholar
  33. [33]
    Anonymous (1998): Hempel acts on imminent tin ban. Marine Engineer’s Review : 48Google Scholar
  34. [34]
    Abolmaali, B.; Taylor, H. V.; Weser, U. (1998): Evolutionary aspects of copper binding centers in copper proteins. In: Williams, R. J. R. (Ed.): Evolutionary aspects of copper binding centers in copper proteins. Springer, Berlin, 92–190Google Scholar
  35. [35]
    RIVM (1989): Integrated Criteria Document Copper. Nr. 758474009. National Institute of Public Health and Environmental Protection (RIVM), Bilthoven, NetherlandsGoogle Scholar
  36. [36]
    Brügmann, L. (1993): Meeresverunreinigung. Ursachen, Zustand, Trends und Effekte, Akademie Verlag, Berlin, p. 104Google Scholar
  37. [37]
    Amiard, J. C.; Amiard-Triquet, C.; Berthel, B.; Metayer, C. (1987): Comparative study of the patterns of bioaccumulation of essential (Cu, Zn) and non-essential (Cd,Pb) trace metals in various estuarine and coastal organisms. J Exp Biol Ecol 106: 73–89CrossRefGoogle Scholar
  38. [38]
    Phinney, J. T.; Bruland, K. W. (1994): Uptake of lipophilic organic Cu, Cd, and Pb Complexes in the Coastal Diatom Thalassiosira weissflogii. Environ Sci Tech 28: 1782–1790CrossRefGoogle Scholar
  39. [39]
    RIVM (1989): Appendix to Integrated Criteria Document Copper: Effects. Nr. 758474009. Bilthoven, NetherlandsGoogle Scholar
  40. [40]
    Garvey, J. E.; Owen, H. A.; Winner, R. W. (1991): Toxicity of copper to the green alga, Chlamydomonas reinhardtii (Chlorophyceae); as affected by humic substances of terrestrial and freshwater origin. Aquat Toxicol 19: 89–96CrossRefGoogle Scholar
  41. [41]
    Scarlett, A.; Donkin, P.; Fileman, T. W.; Evans, S. V.; Donkin, M. E. (1999): Risk posed by the antifouling agent Irgarol 1051 to the seagrass, Zostera marina. Aquat Toxicol 45: 159–170CrossRefGoogle Scholar
  42. [42]
    Tolosa, I.; Readman, J. W.; Blaevoet, A.; Ghilini, S.; Bartocci, J.; Horvat, M. (1996): Contamination of Mediterranean (Cote d’Azur) coastal waters by organotins and Irgarol 1051 used in antifouling paints. Mar Poll Bull 32: 335–341CrossRefGoogle Scholar
  43. [43]
    Toth, S.; Becker Van Slooten, K.; Spack, L.; De-Alencastro, L.-F.; Tarradellas, J. (1996): Irgarol 1051, an antifouling compound in freshwater, sediment, and biota of Lake Geneva. Bull Environ Contam Toxicol 57: 426–433CrossRefGoogle Scholar
  44. [44]
    KEMI (1992): Ecotoxicological evaluation of the antifouling compound 2-(tert-butylamino)-4-(cyclopropylamino)-6-(methylthio)-l,3,5,-triazine Irgarol. Solna, SwedenGoogle Scholar
  45. [45]
    KEMI (1992): Supplement 1 to the ecotoxicological evaluation of the antifouling compound 2-(tert-butylamino)-4-(cyclopropylamino)-6-(methylthio)-l,3,5,-triazine Irgarol. Solna, SwedenGoogle Scholar
  46. [46]
    Willingham, G. L.; Jacobson, A. H. (1996): Designing an environmentally safe marine antifoulant. ACS Symposium Series 640: 224–233CrossRefGoogle Scholar
  47. [47]
    KEMI (1993): Antifouling products: Pleasure boats, commercial vessels, nets, fish cages and other underwater equipment. Kemi Report 2/93. Solna, SwedenGoogle Scholar
  48. [48]
    Vasishtha, N.; Sundberg, D.; Rittschof, D. (1995): Evaluation of release rates and control of biofouling using monolithic coatings containing an isothiazolone. Biofouling 9: 1–16CrossRefGoogle Scholar
  49. [49]
    KEMI (1998): Ecotoxicological evaluation of the biocide 4,5-dichloro-2-n-octyl-4-isothiazolone-3-one (RH-287, RH-5287): Supplementary documentation. Solna, SwedenGoogle Scholar
  50. [50]
    Meylan, W. M.; Howard, P. H. (1995): Atom/fragment contribution method for estimating octanol-water partition coefficients. J Pharm Sci 84: 83–92CrossRefGoogle Scholar
  51. [51]
    Baum, E. J. (1998) Chemical Property Estimation — Theory and Application, CRC Press, Boca RatonGoogle Scholar
  52. [52]
    Callow, M. E.; Willingham, G. L. (1996): Degradation of antifouling biocides. Biofouling 10: 239–249CrossRefGoogle Scholar
  53. [53]
    De Nys, R.; Leya, T.; Maximilien, R.; Afsar, A.; Nair, P. S.; Steinberg, P. D. (1996): The need for standardised broad scale bioassay testing. A case study using the red alga laurencia rigida. Biofouling 10: 213–224CrossRefGoogle Scholar
  54. [54]
    Olin Biocides (1998): Zinc Omadine® Bactericide-Fungicide (Technical Product Information)Google Scholar
  55. [55]
    Olin Biocides (1998): Formulating marine paint with zinc omadine® biocide (Technical Bulletin)Google Scholar
  56. [56]
    Neshyba, S. ( 1987) Oceanography: Perspectives on Fluid Earth, John Wiley & Sons, New YorkGoogle Scholar
  57. [57]
    Galvin, R. M.; Angulo, M.; Rodriguez-Mellado, J. M. (1997): Calculation of the formation constant of the 1:1 complex between manganese(II) and the anion of 2-mercaptopyridine N-oxide (pyrithione) by polarographic measurements. Electroanalysis 9: 653–654CrossRefGoogle Scholar
  58. [58]
    Galvin, R. M.; Angulo, M.; Mellado, R. M. (1995): A contribution to the study of the natural dynamics of pyrithione (2-mercaptopyridine N-oxide). Eur Water Poll Control 5: 27–29Google Scholar
  59. [59]
    Turley, P. A., Fenn, R. J., and Ritter, J. C. (1999): Pyrithiones: Environmental Chemistry and Risk Assessment. In: 10th International Congress on Marine Corrosion and Fouling, 8–12 February 1999. University of Melbourne.Google Scholar
  60. [60]
    Florence, T. M.; Powell, H. K. J.; Stauber, J. L.; Town, R. M. (1992): Toxicity of lipid-soluble copper(II) complexes to the marine diatom Nitzschia closterium: Amelioration by humic substances. Water Res 26: 1187–1193CrossRefGoogle Scholar
  61. [61]
    Skoulis, N. P.; Barbee, S. J.; Jacobson, K. D.; Putman, D. L.; San, R.-H. C. (1993): Evaluation of the genotoxic potential of zinc pyrithione in the Salmonella mutagenicity (Ames) assay, CHO/HGPRT gene mutation assay and mouse micronucleus assay. J Appl Toxicol 13: 283–289CrossRefGoogle Scholar
  62. [62]
    Ermolayeva, E.; Sanders, D. (1995): Mechanism of Pyrithione-Induced Membrane Depolarization in Neurospora crassa. Appl Environ Mircobiol 61: 3385–3390Google Scholar
  63. [63]
    Dinning, A.J.; Al-Adham, I. S.; Austin, P.; Collier, P.J. (1998): A novel assay for the distribution of pyrithione biocides in bacterial cells. Lett Appl Microbiol 27: 1–4CrossRefGoogle Scholar
  64. [64]
    Olin Corporation (18-12-1998): Material Safety Data: Zinc Omadine®Google Scholar
  65. [65]
    Goka, K. (1999): Embryotoxicity of zinc pyrithione, an antidandruff chemical, in fish. Environmental research 81: 81–84CrossRefGoogle Scholar
  66. [66]
    von Gleich, A. (1998): Ökologische Kriterien der Technik- und Stoffbewertung: Integration des Vorsorgeprinzips. Umweltwiss Schadst Forsch 10: 367–373CrossRefGoogle Scholar

Copyright information

© Ecomed Publishers 2000

Authors and Affiliations

  1. 1.UFT — Centre for Environmental Research and Environmental TechnologyUniversity of BremenBremenGermany

Personalised recommendations