Skip to main content
Log in

Sensing inequity: technological solutionism, biodiversity conservation, and environmental DNA

  • Original Article
  • Published:
BioSocieties Aims and scope Submit manuscript

Abstract

Environmental DNA (eDNA) has risen in popularity as a genetically-based method to enumerate species in natural ecosystems, and it is well positioned to be integrated into biodiversity monitoring and conservation initiatives. While the field has made great strides in methodological development, it has largely avoided discussion of its potential inequitable social outcomes. In this paper, we argue that the social asymmetries of eDNA are under-addressed precisely because of how it is framed and valued by powerful actors who may benefit from the technology’s proliferation. We use a framework of representational rhetorics to articulate the discursive process by which the biodiversity crisis is distilled into problems of data-deficiency and inefficiency in scientific articles such that eDNA offers the exact corresponding technological solution. This framing helps justify eDNA’s implementation in local, global, and corporate spheres, despite the methodology’s uncertainties and limitations. It may also enable future inequitable outcomes through sidelining other forms of biodiversity knowledge and enclosing biodiversity information through processes of genetic commodification and privatization. We engage with critiques of neoliberal conservation, big data, and (biodiversity) genomics made by political ecologists and feminist science and technology studies scholars to help reorient the eDNA field towards more equity-oriented discursive practices and implementations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Not applicable.

Notes

  1. This representational rhetoric framework comes from the field of critical discourse analysis (CDA), which seeks “to systematically explore often opaque relationships of causality and determination between (a) discursive practices, events and texts, and (b) wider social and cultural structures, relations and processes; to investigate how such practices, events and texts arise out of and are ideologically shaped by relations of power and struggles over power” (Fairclough 1995, p. 132).

  2. The relationship between biodiversity knowledge production and power has been articulated elsewhere as related concepts of “biocapital,” “biopower,” and “environmentality” by post-structuralist scholars. (Agrawal and Bauer 2005; Biermann and Mansfield 2014; Helmreich 2009; and Turnhout 2018).

  3. Craig Venter’s patent application in 2007 that described the minimal genome required for sustaining a free-living organism is an example of molecular-genetic reductionism. Although the patent was for a list of protein-coding genes that could create a synthetic life form, the viability of the organism was still dependent on its culturing, an environmental context whose qualities are not described further (Calvert 2008).

  4. Discourse that allows eDNA researchers to “fail forward” mirrors discourses of other “pilot” neoliberal conservation projects like the REDD+ carbon credits programs that, through an articulation of a “right to fail” as an opportunity to learn for the future, may absolve actors from taking accountability for their failures and foreclose more socially just alternatives in addressing local conservation issues (Chambers et al. 2022). In other scholarship on the discourses of combatting ocean plastic pollution using techno-solutionist narratives, this tendency for industries to justify their environmentally aware implementations has been criticized as a way to “future-proof” capitalism (Taffel 2018).

References

  • Agersnap, S., E.E. Sigsgaard, M.R. Jensen, M.D.P. Avila, H. Carl, P.R. Møller, S.L. Krøs, S.W. Knudsen, M.S. Wisz, and P.F. Thomsen. 2022. A national scale “BioBlitz” using citizen science and eDNA metabarcoding for monitoring coastal marine fish. Frontiers in Marine Science 9: 824100.

    Article  Google Scholar 

  • Agrawal, A., and J. Bauer. 2005. Environmentality: technologies of government and the making of subjects. Ethics and International Affairs 19 (3): 116–118.

    Google Scholar 

  • Agrawal, A., and K. Redford. 2009. Conservation and displacement: An overview. Conservation and Society 7 (1): 1–10.

    Article  Google Scholar 

  • Ahmadia, G.N., S.H. Cheng, D.A. Andradi-Brown, S.K. Baez, M.D. Barnes, N.J. Bennett, S.J. Campbell, E.S. Darling, D. Gill, E. Gress, and G.G. Gurney. 2021. Limited progress in improving gender and geographic representation in coral reef science. Frontiers in Marine Science 8: 731037.

    Article  Google Scholar 

  • Apostolopoulou, E., A. Chatzimentor, S. Maestre-Andrés, M. Requena-i-Mora, A. Pizarro, and D. Bormpoudakis. 2021. Reviewing 15 years of research on neoliberal conservation: Towards a decolonial, interdisciplinary, intersectional and community-engaged research agenda. Geoforum 124: 236–256.

    Article  Google Scholar 

  • Anomaly, J. 2022. Race, eugenics, and the Holocaust. In Bioethics and the Holocaust: A comprehensive study in how the Holocaust continues to shape the ethics of health, medicine and human rights, 153–171. Cham: Springer.

    Chapter  Google Scholar 

  • Arts, K., R. Van der Wal, and W.M. Adams. 2015. Digital technology and the conservation of nature. Ambio 44: 661–673.

    Article  Google Scholar 

  • Ausubel, J.H., and M.Y. Stoeckle. 2021. The great global fish count (GGFC): A potential project of the UN ocean decade. Marine Technology Society Journal 55 (3): 116–117.

    Article  Google Scholar 

  • Barnes, M.A., and C.R. Turner. 2016. The ecology of environmental DNA and implications for conservation genetics. Conservation Genetics 17 (1): 1–17.

    Article  Google Scholar 

  • Belle, C.C., B.C. Stoeckle, and J. Geist. 2019. Taxonomic and geographical representation of freshwater environmental DNA research in aquatic conservation. Aquatic Conservation: Marine and Freshwater Ecosystems 29 (11): 1996–2009.

    Article  Google Scholar 

  • Biermann, C., and B. Mansfield. 2014. Biodiversity, purity, and death: Conservation biology as biopolitics. Environment and Planning D: Society and Space 32 (2): 257–273.

    Article  Google Scholar 

  • Beng, K.C., and R.T. Corlett. 2020. Applications of environmental DNA (eDNA) in ecology and conservation: Opportunities, challenges and prospects. Biodiversity and Conservation 29: 2089–2121.

    Article  Google Scholar 

  • Benjaminsen, T.A., M.J. Goldman, M.Y. Minwary, and F.P. Maganga. 2013. Wildlife management in Tanzania: State control, rent seeking and community resistance. Development and Change 44 (5): 1087–1109.

    Article  Google Scholar 

  • Bennett, N.J., H. Govan, and T. Satterfield. 2015. Ocean grabbing. Marine Policy 57: 61–68.

    Article  Google Scholar 

  • Berry, O., S. Jarman, A. Bissett, M. Hope, C. Paeper, C. Bessey, M.K. Schwartz, J. Hale, and M. Bunce. 2021. Making environmental DNA (eDNA) biodiversity records globally accessible. Environmental DNA 3 (4): 699–705.

    Article  Google Scholar 

  • Besson, M., J. Alison, K. Bjerge, T.E. Gorochowski, T.T. Høye, T. Jucker, H.M. Mann, and C.F. Clements. 2022. Towards the fully automated monitoring of ecological communities. Ecology Letters 25 (12): 2753–2775.

    Article  Google Scholar 

  • Biggs, J., N. Ewald, A. Valentini, C. Gaboriaud, T. Dejean, R.A. Griffiths, J. Foster, J.W. Wilkinson, A. Arnell, P. Brotherton, and P. Williams. 2015. Using eDNA to develop a national citizen science-based monitoring programme for the great crested newt (Triturus cristatus). Biological Conservation 183: 19–28.

    Article  Google Scholar 

  • Bowker, G.C. 2000. Biodiversity datadiversity. Social Studies of Science 30 (5): 643–683.

    Article  Google Scholar 

  • Brockington, D., R. Duffy, and J. Igoe. 2012. Nature unbound: Conservation, capitalism and the future of protected areas. London: Routledge.

    Book  Google Scholar 

  • Büscher, B., S. Sullivan, K. Neves, J. Igoe, and D. Brockington. 2012. Towards a synthesized critique of neoliberal biodiversity conservation. Capitalism Nature Socialism 23 (2): 4–30.

    Article  Google Scholar 

  • Buxton, R.T., J.R. Bennett, A.J. Reid, C. Shulman, S.J. Cooke, C.M. Francis, E.A. Nyboer, G. Pritchard, A.D. Binley, S. Avery-Gomm, and N.C. Ban. 2021. Key information needs to move from knowledge to action for biodiversity conservation in Canada. Biological Conservation 256: 108983.

    Article  Google Scholar 

  • Byrd, W.C., and M.W. Hughey. 2015. Biological determinism and racial essentialism: The ideological double helix of racial inequality. The Annals of the American Academy of Political and Social Science 661 (1): 8–22.

    Article  Google Scholar 

  • Calvert, J. 2008. The commodification of emergence: Systems biology, synthetic biology and intellectual property. BioSocieties 3 (4): 383–398.

    Article  Google Scholar 

  • Carroll, S.R., I. Garba, O.L. Figueroa-Rodríguez, J. Holbrook, R. Lovett, S. Materechera, M. Parsons, K. Raseroka, D. Rodriguez-Lonebear, R. Rowe, and R. Sara. 2020. The CARE principles for indigenous data governance. Data Science Journal 19: 1–12.

    Article  Google Scholar 

  • Chambers, J.M., K. Massarella, and R. Fletcher. 2022. The right to fail? Problematizing failure discourse in international conservation. World Development (150): 105723.

  • Chavez, F.C., M. Leinen, A. Allen, J. Bowman, J. Jaffe, and C. Scholin. 2021. A Global eDNA Monitoring System (GeMS). [Powerpoint slides]. The National Academies Vimeo. https://vimeo.com/516866832. Accessed 23 Feb 2023.

  • Clark, J.A., and R.M. May. 2002. Taxonomic bias in conservation research. Science 297 (5579): 191–192.

    Article  Google Scholar 

  • Compson, Z.G., B. McClenaghan, G.A. Singer, N.A. Fahner, and M. Hajibabaei. 2020. Metabarcoding from microbes to mammals: Comprehensive bioassessment on a global scale. Frontiers in Ecology and Evolution 8: 581835.

    Article  Google Scholar 

  • Coopmans, C., J. Vertesi, M.E. Lynch, and S. Woolgar, eds. 2014. Representation in scientific practice revisited. Cambridge: MIT Press.

    Google Scholar 

  • Cristescu, M.E., and P.D. Hebert. 2018. Uses and misuses of environmental DNA in biodiversity science and conservation. Annual Review of Ecology, Evolution, and Systematics 49: 209–230.

    Article  Google Scholar 

  • Crosman, K.M., E.H. Allison, Y. Ota, A.M. Cisneros-Montemayor, G.G. Singh, W. Swartz, M. Bailey, K.M. Barclay, G. Blume, M. Colléter, and M. Fabinyi. 2022. Social equity is key to sustainable ocean governance. NPJ Ocean Sustainability 1 (1): 4.

    Article  Google Scholar 

  • Curtis, A.N., C.C. Barbosa, L.A. Rock, P. Rogers, and C.A. Sharitt. 2023. Optimism for the future use of environmental DNA (eDNA) to study global climate change. Limnology and Oceanography Bulletin. https://doi.org/10.1002/lob.10546.

    Article  Google Scholar 

  • Dahlman, S. 2010. Chicago River Businesses to Corps of Engineers: Show Us the Carp! Loop North News. https://www.loopnorth.com/news/carp0318.html. Accessed 23 Feb 2023.

  • Damiens, F.L., L. Mumaw, A. Backstrom, S.A. Bekessy, B. Coffey, R. Faulkner, G.E. Garrard, M.J. Hardy, A.M. Kusmanoff, L. Mata, and L. Rickards. 2017. Why politics and context matter in conservation policy. Global Policy 8 (2): 253–256.

    Article  Google Scholar 

  • Danielsen, F., M. Enghoff, M.K. Poulsen, M. Funder, P.M. Jensen, and N.D. Burgess. 2021. The concept, practice, application, and results of locally based monitoring of the environment. BioScience 71 (5): 484–502.

    Article  Google Scholar 

  • Dawson, N.M., B. Coolsaet, E.J. Sterling, R. Loveridge, N.D. Gross-Camp, S. Wongbusarakum, K.K. Sangha, L.M. Scherl, H. Phuong Phan, N. Zafra-Calvo, and W.G. Lavey. 2021. The role of Indigenous peoples and local communities in effective and equitable conservation. Ecology and Society. https://doi.org/10.5751/ES-12625-260319.

    Article  Google Scholar 

  • de Boer, B., H. Te Molder, and P.P. Verbeek. 2021. Understanding science-in-the-making by letting scientific instruments speak: From semiotics to postphenomenology. Social Studies of Science 51 (3): 392–413.

    Article  Google Scholar 

  • Dean, J. 2008. Enjoying Neoliberalism. Cultural Politics 4 (1): 47–72.

    Article  Google Scholar 

  • Deiner, K., H. Yamanaka, and L. Bernatchez. 2021. The future of biodiversity monitoring and conservation utilizing environmental DNA. Environmental DNA 3 (1): 3–7.

    Article  Google Scholar 

  • Dempsey, J. 2016. Enterprising nature: Economics, markets, and finance in global biodiversity politics. Hoboken: Wiley.

    Book  Google Scholar 

  • Dempsey, J., and D.C. Suarez. 2016. Arrested development? The promises and paradoxes of “selling nature to save it.” Annals of the American Association of Geographers 106 (3): 653–671.

    Article  Google Scholar 

  • Devictor, V., and B. Bensaude-Vincent. 2016. From ecological records to big data: The invention of global biodiversity. History and Philosophy of the Life Sciences 38: 1–23.

    Article  Google Scholar 

  • Dikötter, F. 1998. Race culture: Recent perspectives on the history of eugenics. The American Historical Review 103 (2): 467–478.

    Article  Google Scholar 

  • Duster, T. 2004. Backdoor to eugenics. New York: Routledge.

    Book  Google Scholar 

  • Egan, D. 2021. Chicago River becomes Battleground Test Lab. Milwaukee Journal Sentinel. https://www.jsonline.com/in-depth/archives/2021/08/30/deep-trouble-part-one-chicago-river-becomes-battleground-test-lab/7881013002/. Accessed 23 Feb 2023.

  • Escobar, A. 1998. Whose knowledge, whose nature? Biodiversity, conservation, and the political ecology of social movements. Journal of Political Ecology 5 (1): 53–82.

    Google Scholar 

  • Environmental Protection Authority. n.d. About the programme. https://www.epa.govt.nz/community-involvement/open-waters-aotearoa/the-programme/. Accessed 23 Feb 2023.

  • Fairclough, N. 1995. Critical discourse analysis: The critical study of language. London: Longman.

    Google Scholar 

  • Fairhead, J., M. Leach, and I. Scoones. 2012. Green grabbing: A new appropriation of nature? Journal of Peasant Studies 39 (2): 237–261.

    Article  Google Scholar 

  • Fitzgerald, A., J. Halliday, and D. Heath. 2021. Environmental DNA as novel technology: Lessons in agenda setting and framing in news media. Animals 11 (10): 2874.

    Article  Google Scholar 

  • Fletcher, R. 2020. Neoliberal conservation. In Oxford research encyclopedia of anthropology, Oxford: Oxford University Press.

    Google Scholar 

  • Fletcher, R., W. Dressler, B. Büscher, and Z.R. Anderson. 2016. Questioning REDD+ and the future of market-based conservation. Conservation Biology 30 (3): 673–675.

    Article  Google Scholar 

  • Forsyth, T. 2004. Critical political ecology: The politics of environmental science. London: Routledge.

    Book  Google Scholar 

  • Fortmann, L., ed. 2009. Participatory research in conservation and rural livelihoods: Doing science together. Hoboken: Wiley.

    Google Scholar 

  • Gadgil, M., F. Berkes, and C. Folke. 1993. Indigenous knowledge for biodiversity conservation. Ambio 22: 151–156.

    Google Scholar 

  • Gastel, B., and R.A. Day. 2022. How to write and publish a scientific paper. Santa Barbara: ABC-CLIO.

    Book  Google Scholar 

  • Graves, J.L., Jr. 2015. Great is their sin: Biological determinism in the age of genomics. The Annals of the American Academy of Political and Social Science 661 (1): 24–50.

    Article  Google Scholar 

  • Haila, Y., and L. Heininen. 1995. Ecology: A new discipline for disciplining? Social Text (42): 153–171.

  • Handsley-Davis, M., E. Kowal, L. Russell, and L.S. Weyrich. 2021. Researchers using environmental DNA must engage ethically with Indigenous communities. Nature Ecology and Evolution 5 (2): 146–148.

    Article  Google Scholar 

  • Hansen, B.K., M.W. Jacobsen, A.L. Middelboe, C.M. Preston, R. Marin, D. Bekkevold, S.W. Knudsen, P.R. Møller, and E.E. Nielsen. 2020. Remote, autonomous real-time monitoring of environmental DNA from commercial fish. Scientific Reports 10 (1): 1–8.

    Article  Google Scholar 

  • Harrison, J.B., J.M. Sunday, and S.M. Rogers. 2019. Predicting the fate of eDNA in the environment and implications for studying biodiversity. Proceedings of the Royal Society B 286 (1915): 20191409.

    Article  Google Scholar 

  • Helmreich, S. 2009. Alien ocean: Anthropological voyages in microbial seas. Berkeley: University of California Press.

    Book  Google Scholar 

  • Hickel, J. 2021. The anti-colonial politics of degrowth. Political Geography. https://doi.org/10.1016/j.polgeo.2021.102404.

    Article  Google Scholar 

  • Holmes, G., and C.J. Cavanagh. 2016. A review of the social impacts of neoliberal conservation: Formations, inequalities, contestations. Geoforum 75: 199–209.

    Article  Google Scholar 

  • Huerlimann, R., M.K. Cooper, R.C. Edmunds, C. Villacorta-Rath, A. Le Port, H.L.A. Robson, J.M. Strugnell, D. Burrows, and D.R. Jerry. 2020. Enhancing tropical conservation and ecology research with aquatic environmental DNA methods: An introduction for non-environmental DNA specialists. Animal Conservation 23 (6): 632–645.

    Article  Google Scholar 

  • Igoe, J. 2010. The spectacle of nature in the global economy of appearances: Anthropological engagements with the spectacular mediations of transnational conservation. Critique of Anthropology 30 (4): 375–397.

    Article  Google Scholar 

  • Igoe, J., and D. Brockington. 2007. Neoliberal conservation. Conservation and Society 5 (4): 432–449.

    Google Scholar 

  • Integrated Ecosystem Assessment for the Broughton Area. n.d. BATI Program. https://integratedecosystemassessment.ca/program/bati/. Accessed 23 Feb 2023.

  • International Barcode of Life. 2022. BIOSCAN receives $24 million to illuminate biodiversity. https://ibol.org/news/bioscan-receives-24-million-to-illuminate-biodiversity/. Accessed 23 Feb 2023.

  • Jarman, S.N., O. Berry, and M. Bunce. 2018. The value of environmental DNA biobanking for long-term biomonitoring. Nature Ecology and Evolution 2 (8): 1192–1193.

    Article  Google Scholar 

  • Jerde, C.L., W.L. Chadderton, A.R. Mahon, M.A. Renshaw, J. Corush, M.L. Budny, S. Mysorekar, and D.M. Lodge. 2013. Detection of Asian carp DNA as part of a Great Lakes basin-wide surveillance program. Canadian Journal of Fisheries and Aquatic Sciences 70 (4): 522–526.

    Article  Google Scholar 

  • Jiang, L., and Y. Yang. 2017. Visualization of international environmental DNA research. Current Science 112: 1659–1664.

    Article  Google Scholar 

  • Karger, E.J., and A.H. Scholz. 2021. DSI, the Nagoya Protocol, and stakeholders’ concerns. Trends in Biotechnology 39 (2): 110–112.

    Article  Google Scholar 

  • Kelly, R.P. 2016. Making environmental DNA count. Molecular Ecology Resources 16 (1): 10–12.

    Article  Google Scholar 

  • Kohler, R.E. 2002. Landscapes and labscapes: Exploring the lab-field border in biology. Chicago: University of Chicago Press.

    Book  Google Scholar 

  • Kranzberg, M. 1986. Technology and history: “Kranzberg’s laws.” Technology and Culture 27 (3): 544–560.

    Google Scholar 

  • Latour, B. 1987. Science in action: How to follow scientists and engineers through society. Cambridge: Harvard University Press.

    Google Scholar 

  • Leese, F., A. Bouchez, K. Abarenkov, F. Altermatt, Á. Borja, K. Bruce, T. Ekrem, F. Čiampor Jr., Z. Čiamporová-Zaťovičová, F.O. Costa, and S. Duarte. 2018. Why we need sustainable networks bridging countries, disciplines, cultures and generations for aquatic biomonitoring 2.0: A perspective derived from the DNAqua-Net COST action. In Advances in ecological research, vol. 58, 63–99. Cambridge: Academic Press.

    Google Scholar 

  • Lewin, H.A., G.E. Robinson, W.J. Kress, W.J. Baker, J. Coddington, K.A. Crandall, R. Durbin, S.V. Edwards, F. Forest, M.T.P. Gilbert, and M.M. Goldstein. 2018. Earth BioGenome Project: Sequencing life for the future of life. Proceedings of the National Academy of Sciences 115 (17): 4325–4333.

    Article  Google Scholar 

  • Liboiron, M. 2021. Pollution is colonialism. Durham: Duke University Press.

    Book  Google Scholar 

  • Lodge, D.M. 2022. Policy action needed to unlock eDNA potential. Frontiers in Ecology and the Environment 20 (8): 448–449.

    Article  Google Scholar 

  • Lodge, D.M., C.R. Turner, C.L. Jerde, M.A. Barnes, L. Chadderton, S.P. Egan, J.L. Feder, A.R. Mahon, and M.E. Pfrender. 2012. Conservation in a cup of water: Estimating biodiversity and population abundance from environmental DNA. Molecular Ecology 21 (11): 2555–2558.

    Article  Google Scholar 

  • Loeza-Quintana, T., C.L. Abbott, D.D. Heath, L. Bernatchez, and R.H. Hanner. 2020. Pathway to Increase Standards and Competency of eDNA Surveys (PISCeS)—advancing collaboration and standardization efforts in the field of eDNA. Environmental DNA 2 (3): 255–260.

    Article  Google Scholar 

  • Longino, H.E. 1987. Can there be a feminist science? Hypatia 2 (3): 51–64.

    Article  Google Scholar 

  • Mama, A. 2002. Beyond the masks: Race, gender and subjectivity. London: Routledge.

    Book  Google Scholar 

  • Mandle, L., H. Tallis, L. Sotomayor, and A.L. Vogl. 2015. Who loses? Tracking ecosystem service redistribution from road development and mitigation in the Peruvian Amazon. Frontiers in Ecology and the Environment 13 (6): 309–315.

    Article  Google Scholar 

  • Marques, V., T. Milhau, C. Albouy, T. Dejean, S. Manel, D. Mouillot, and J.B. Juhel. 2021. GAPeDNA: Assessing and mapping global species gaps in genetic databases for eDNA metabarcoding. Diversity and Distributions 27 (10): 1880–1892.

    Article  Google Scholar 

  • Mathieu, C., S.M. Hermans, G. Lear, T.R. Buckley, K.C. Lee, and H.L. Buckley. 2020. A systematic review of sources of variability and uncertainty in eDNA data for environmental monitoring. Frontiers in Ecology and Evolution 8: 135.

    Article  Google Scholar 

  • McAfee, K. 2003. Neoliberalism on the molecular scale. Economic and genetic reductionism in biotechnology battles. Geoforum 34 (2): 203–219.

    Article  Google Scholar 

  • McLean, J. 2020. Frontier technologies and digital solutions: Digital ecosystems, open data and wishful thinking. Anthropocenes—Human, Inhuman, Posthuman. https://doi.org/10.16997/ahip.18.

    Article  Google Scholar 

  • McKinley, D.C., A.J. Miller-Rushing, H.L. Ballard, R. Bonney, H. Brown, S.C. Cook-Patton, D.M. Evans, R.A. French, J.K. Parrish, T.B. Phillips, and S.F. Ryan. 2017. Citizen science can improve conservation science, natural resource management, and environmental protection. Biological Conservation 208: 15–28.

    Article  Google Scholar 

  • Millner, N. 2020. As the drone flies: Configuring a vertical politics of contestation within forest conservation. Political Geography 80: 102163.

    Article  Google Scholar 

  • Miya, M. 2022. Environmental DNA metabarcoding: A novel method for biodiversity monitoring of marine fish communities. Annual Review of Marine Science 14: 161–185.

    Article  Google Scholar 

  • Moranta, J., C. Torres, I. Murray, M. Hidalgo, H. Hinz, and A. Gouraguine. 2022. Transcending capitalism growth strategies for biodiversity conservation. Conservation Biology 36 (2): 13821.

    Article  Google Scholar 

  • Morozov, E. 2013. To save everything, click here: The folly of technological solutionism. New York: Public Affairs.

  • NatureMetrics. n.d. Extractives. https://www.naturemetrics.co.uk/sectors/extractives/. Accessed 23 Feb 2023.

  • NatureMetrics. (n.d.). Inside NatureMetrics. https://www.naturemetrics.co.uk/inside-nature-metrics/. Accessed 23 Feb 2023.

  • NatureMetrics. (n.d.). Sectors. https://www.naturemetrics.co.uk/sectors/. Accessed 23 Feb 2023.

  • NatureMetrics. 2021. NatureMetrics and IUCN launch eBioAtlas to tackle biodiversity crisis. https://www.naturemetrics.co.uk/2021/06/17/naturemetrics-and-iucn-launch-ebioatlas-to-tackle-biodiversity-crisis/. Accessed 12 Oct 2022.

  • Nguyen, B.N., E.W. Shen, J. Seemann, A.M. Correa, J.L. O’Donnell, A.H. Altieri, N. Knowlton, K.A. Crandall, S.P. Egan, W.O. McMillan, and M. Leray. 2020. Environmental DNA survey captures patterns of fish and invertebrate diversity across a tropical seascape. Scientific Reports 10 (1): 6729.

    Article  Google Scholar 

  • Nost, E., and J.E. Goldstein. 2022. A political ecology of data. Environment and Planning e: Nature and Space 5 (1): 3–17.

    Google Scholar 

  • Ojeda, D. 2012. Green pretexts: Ecotourism, neoliberal conservation and land grabbing in Tayrona National Natural Park, Colombia. Journal of Peasant Studies 39 (2): 357–375.

    Article  Google Scholar 

  • Parris-Piper, N., W.H. Dressler, P. Satizábal, and R. Fletcher. 2023. Automating violence? The anti-politics of ‘smart technology’ in biodiversity conservation. Biological Conservation 278: 109859.

    Article  Google Scholar 

  • Partelow, S., A.K. Hornidge, P. Senff, M. Stäbler, and A. Schlüter. 2020. Tropical marine sciences: Knowledge production in a web of path dependencies. PLoS ONE 15 (2): 0228613.

    Article  Google Scholar 

  • Peterson, A.T., J. Soberón, and L. Krishtalka. 2015. A global perspective on decadal challenges and priorities in biodiversity informatics. BMC Ecology 15 (1): 1–9.

    Article  Google Scholar 

  • Rabitz, F., J.L. Reynolds, and E. Tsioumani. 2022. Emerging technologies in biodiversity governance: Gaps and opportunities for action. In Transforming biodiversity governance, ed. I.J. Visseren-Hamakers and M.T.J. Kok. Cambridge: Cambridge University Press.

    Google Scholar 

  • Rees, H.C., B.C. Maddison, D.J. Middleditch, J.R. Patmore, and K.C. Gough. 2014. The detection of aquatic animal species using environmental DNA–a review of eDNA as a survey tool in ecology. Journal of Applied Ecology 51 (5): 1450–1459.

    Article  Google Scholar 

  • Reeves, A. 2019. Overrun: Dispatches from the Asian carp crisis. Toronto: ECW Press.

    Google Scholar 

  • Rossi, J. 2013. The socionatural engineering of reductionist metaphors: A political ecology of synthetic biology. Environment and Planning A 45 (5): 1127–1143.

    Article  Google Scholar 

  • Ryabinin, V., J. Barbière, P. Haugan, G. Kullenberg, N. Smith, C. McLean, A. Troisi, A. Fischer, S. Aricò, T. Aarup, and P. Pissierssens. 2019. The UN decade of ocean science for sustainable development. Frontiers in Marine Science 6: 470.

    Article  Google Scholar 

  • Sadowski, J. 2019. When data is capital: Datafication, accumulation, and extraction. Big Data & Society 6 (1): 2053951718820549.

    Article  Google Scholar 

  • Sagarin, R., and A. Pauchard. 2012. Observation and ecology: Broadening the scope of science to understand a complex world. Washington, DC: Island Press.

    Book  Google Scholar 

  • Sarkar, D., and C.A. Chapman. 2021. The smart forest Conundrum: Contextualizing pitfalls of sensors and AI in conservation science for tropical forests. Tropical Conservation Science 14: 19400829211014740.

    Article  Google Scholar 

  • Seymour, M. 2019. Rapid progression and future of environmental DNA research. Communications Biology 2 (1): 1–3.

    Article  Google Scholar 

  • Schadewell, Y., and C.I. Adams. 2021. Forensics meets ecology–environmental DNA offers new capabilities for marine ecosystem and fisheries research. Frontiers in Marine Science 8: 668822.

    Article  Google Scholar 

  • Sonter, L.J., J. Gourevitch, I. Koh, C.C. Nicholson, L.L. Richardson, A.J. Schwartz, N.K. Singh, K.B. Watson, M. Maron, and T.H. Ricketts. 2018. Biodiversity offsets may miss opportunities to mitigate impacts on ecosystem services. Frontiers in Ecology and the Environment 16 (3): 143–148.

    Article  Google Scholar 

  • Stefanoudis, P.V., W.Y. Licuanan, T.H. Morrison, S. Talma, J. Veitayaki, and L.C. Woodall. 2021. Turning the tide of parachute science. Current Biology 31 (4): R184–R185.

    Article  Google Scholar 

  • Subramaniam, B. 2014. Ghost stories for Darwin: The science of variation and the politics of diversity. Champaign: University of Illinois Press.

    Book  Google Scholar 

  • Sunderlin, W.D., E.O. Sills, A.E. Duchelle, A.D. Ekaputri, D. Kweka, M.A. Toniolo, S. Ball, N. Doggart, C.D. Pratama, J.T. Padilla, A. Enright, and R.M. Otsyina. 2015. REDD+ at a critical juncture: Assessing the limits of polycentric governance for achieving climate change mitigation. International Forestry Review 17 (4): 400–413.

    Article  Google Scholar 

  • Taberlet, P., E. Coissac, M. Hajibabaei, and L.H. Rieseberg. 2012. Environmental DNA. Molecular Ecology 21 (8): 1789–1793.

    Article  Google Scholar 

  • Taberlet, P., A. Bonin, L. Zinger, and E. Coissac. 2018. Environmental DNA: For biodiversity research and monitoring. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Taffel, S. 2018. Hopeful extinctions? Tesla, technological solutionism and the anthropocene. Culture Unbound 10 (2): 163–184.

    Article  Google Scholar 

  • Thomsen, P.F., and E. Willerslev. 2015. Environmental DNA–An emerging tool in conservation for monitoring past and present biodiversity. Biological Conservation 183: 4–18.

    Article  Google Scholar 

  • Tregidga, H. 2013. Biodiversity offsetting: Problematisation of an emerging governance regime. Accounting, Auditing and Accountability Journal. 26: 806–832.

    Article  Google Scholar 

  • Trisos, C.H., J. Auerbach, and M. Katti. 2021. Decoloniality and anti-oppressive practices for a more ethical ecology. Nature Ecology and Evolution 5 (9): 1205–1212.

    Article  Google Scholar 

  • Tupala, A.K., S. Huttunen, and P. Halme. 2022. Social impacts of biodiversity offsetting: A review. Biological Conservation 267: 109431.

    Article  Google Scholar 

  • Turnhout, E. 2018. The politics of environmental knowledge. Conservation and Society 16 (3): 363–371.

    Article  Google Scholar 

  • Vermeulen, N. 2013. From Darwin to the census of marine life: Marine biology as big science. PLoS ONE 8 (1): e54284.

    Article  Google Scholar 

  • von der Heyden, S. 2023. Environmental DNA surveys of African biodiversity: State of knowledge, challenges, and opportunities. Environmental DNA 5 (1): 12–17.

    Article  Google Scholar 

  • Watanabe, M.E. 2019. The Nagoya Protocol: The conundrum of defining digital sequence information. BioScience 69 (6): 480–480.

    Article  Google Scholar 

  • West, P. 2016. Dispossession and the environment: Rhetoric and inequality in Papua New Guinea. New York: Columbia University Press.

    Book  Google Scholar 

  • Wilson, J.R., Ş Procheş, B. Braschler, E.S. Dixon, and D.M. Richardson. 2007. The (bio) diversity of science reflects the interests of society. Frontiers in Ecology and the Environment 5 (8): 409–414.

    Article  Google Scholar 

  • Youatt, R. 2008. Counting species: Biopower and the global biodiversity census. Environmental Values 17 (3): 393–417.

    Article  Google Scholar 

Download references

Funding

This work was supported by a National Science Foundation Graduate Research Fellowship awarded to Elaine W. Shen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elaine W. Shen.

Ethics declarations

Conflict of interest

The authors declare that there are no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, E.W., Vandenberg, J.M. & Moore, A. Sensing inequity: technological solutionism, biodiversity conservation, and environmental DNA. BioSocieties (2023). https://doi.org/10.1057/s41292-023-00315-w

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1057/s41292-023-00315-w

Keywords

Navigation