Abstract
Synthetic biology appears to be moving toward engineering whole living organisms. This article addresses how Saccharomyces cerevisiae 2.0, a whole-genome construction project, presents an argument for a route toward that end through discursive tools it employs to construct “synthetic yeast.” I analyze metaphors in recent peer-reviewed literature associated with the synthetic yeast project, asking how these metaphors shape the nature of synthetic yeast and relate the yeast to its parts and to its engineers. While chromosomes and other genome components are handled with metaphors emphasizing scientific control, the absence of these metaphors’ extension to the whole organism leaves space for the synthetic yeast itself to have unpredicted and surprising emergent characteristics. I argue that examining metaphors as instruments of scientific construction in disciplinary discourse, independent of their use in science communication to lay audiences, contributes to conversations about how and what scientists construct in their movements toward ‘engineering life.’
This is a preview of subscription content, access via your institution.

Notes
Stop codons signal to ribosomes that the ribosome has reached the end of the portion of a messenger RNA transcript that should be translated into a protein.
Non-essential genes are genes which can be deleted or inactivated without killing the cell. They are putative because they have been identified as non-essential through previous experiments inactivating one or two genes at a time, but this set may not perfectly overlap with the set identified when multiple genes are inactivated simultaneously.
In silico refers to symbolically designing, in a digital computer system, something which could be physically realized as a biological system. in yeasto refers to physically realizing something in live yeast. Both riff on terminology common in biology of performing experiments in vitro and in vivo.
References
Ankeny, R.A., and S. Leonelli. 2011. What’s So Special About Model Organisms? Studies in History and Philosophy of Science Part A, Model-Based Representation in Scientific Practice 42: 313–323.
Arkin, A., D. Berry, G. Church, F. Arnold, J. Boldt, O. Müller, A.D. Ellington, D. Endy, M. Fussenegger, E.R. Gold, J. Greenwood, S.Y. Lee, W. Lim, J. Minshull, T.H. Murray, G. Poste, K.L.J. Prather, H. El-Samad, C. Smolke, and R. Weiss. 2009. What’s in a name? Nature Biotechnology 27: 1071–1073.
Brown, T.L. 2003. Making Truth: Metaphor in Science. Urbana: University of Illinois Press.
Burke, K. 1968. Language as Symbolic Action. Berkeley: University of California Press.
Calvert, J. 2008. The Commodification of Emergence: Systems Biology, Synthetic Biology and Intellectual Property. BioSocieties 3: 383–398.
Ceccarelli, L. 2004. Neither Confusing Cacophony Nor Culinary Complements: A Case Study of Mixed Metaphors for Genomic Science. Written Communication 21: 92–105.
Ceccarelli, L. 2013. On the Frontier of Science: An American Rhetoric of Exploration and Exploitation. East Lansing: Michigan State University Press.
Chan, L.Y., S. Kosuri, and D. Endy. 2005. Refactoring Bacteriophage T7. Molecular Systems Biology 0018: 1–10.
Christidou, V., K. Dimopoulos, and V. Koulaidis. 2004. Constructing Social Representations of Science and Technology: The Role of Metaphors in the Press and the Popular Scientific Magazines. Public Understanding of Science 13: 347–362.
Condit, C.M. 1999. How the Public Understands Genetics: Non-deterministic and Non-discriminatory Interpretations of the “Blueprint” Metaphor. Public Understanding of Science 8: 169–180.
de la Bellacasa, M.P. 2011. Matters of Care in Technoscience: Assembling Neglected Things. Social Studies of Science 41: 85–106.
Dymond, J., and J. Boeke. 2012. The Saccharomyces Cerevisiae SCRaMbLE System and Genome Minimization. Bioengineered Bugs 3: 168–171.
Dymond, J.S., S.M. Richardson, C.E. Coombes, T. Babatz, H. Muller, N. Annaluru, W.J. Blake, J.W. Schwerzmann, J. Dai, D.L. Lindstrom, A.C. Boeke, D.E. Gottschling, S. Chandrasegaran, J.S. Bader, J.D. Boeke. 2011. Synthetic chromosome arms function in yeast and generate phenotypic diversity by design. Nature 477 (7365): 471–476.
Ending the War Metaphor. 2006. The Changing Agenda for Unraveling the Host-Microbe Relationship—Workshop Summary. Washington DC: The National Academies Press.
Endy, D. 2005. Foundations for Engineering Biology. Nature 438: 449–453.
Foucault, M. 1989. The Archaeology of Knowledge. London: Routledge.
Freddi, M., B. Korte, and J. Schmied. 2013. Developments and Trends in the Rhetoric of Science. European Journal of English Studies 17: 221–234.
Frow, E.K. 2013. Making Big Promises Come True? Articulating and Realizing Value in Synthetic Biology. BioSocieties 8: 432–448.
Gschmeidler, B., and A. Seiringer. 2012. “Knight in Shining Armour” or “Frankenstein’s Creation”? The Coverage of Synthetic Biology in German-Language Media. Public Understanding of Science 21: 163–173.
Haraway, D. 1976. Crystals, Fabrics, and Fields: Metaphors that Shape Embryos. New Haven: Yale University Press.
Hellsten, I., and B. Nerlich. 2011. Synthetic Biology: Building the Language for a New Science Brick by Metaphorical Brick. New Genetics and Society 30: 375–397.
Hilgartner, S. 2015. Capturing the Imaginary: Vanguards, Visions, and the Synthetic Biology Revolution. In Science & Democracy: Making Knowledge and Making Power in the Biosciences and Beyond, ed. S. Hilgartner, C. Miller, and R. Hagendijk, 33–55. New York: Routledge.
Howard, R.M. 1995. Plagiarisms, Authorships, and the Academic Death Penalty. College English 57 (7): 708–736.
Hutchison, C.A., R.-Y. Chuang, V.N. Noskov, N. Assad-Garcia, T.J. Deerinck, M.H. Ellisman, J. Gill, K. Kannan, B.J. Karas, L. Ma, J.F. Pelletier, Z.-Q. Qi, R.A. Richter, E.A. Strychalski, L. Sun, Y. Suzuki, B. Tsvetanova, K.S. Wise, H.O. Smith, J.I. Glass, C. Merryman, D.G. Gibson, and J.C. Venter. 2016. Design and Synthesis of a Minimal Bacterial Genome. Science 351 (6280): aad6253-1-11.
Keller, E.F. 1995. Refiguring Life: Metaphors of Twentieth Century Biology. New York: Columbia University Press.
Keller, E.F. 2012. Lexicons, Kind-Terms, and World Changes. Historical Studies in the Natural Sciences 42: 527–531.
Kendig, C., and T.T. Eckdahl. 2017. Reengineering Metaphysics: Modularity, Parthood, and Evolvability in Metabolic Engineering. Philosophy and Theory in Practical Biology 9 (8): 1–21.
Kimmel, M. 2010. Why We Mix Metaphors (and Mix Them Well): Discourse Coherence, Conceptual Metaphor, and Beyond. Journal of Pragmatics 42: 97–115.
Kuhn, T. 1962. The Structure of Scientific Revolutions. Chicago: University of Chicago Press.
Lakoff, G., and M. Johnson. 1980. Metaphors We Live by. Chicago: University of Chicago Press.
Leonelli, S., and R.A. Ankeny. 2013. What Makes a Model Organism? Endeavour 37: 209–212.
Lin, Q., H. Qi, Y. Wu, and Y. Yuan. 2015. Robust Orthogonal Recombination System for Versatile Genomic Elements Rearrangement in Yeast Saccharomyces cerevisiae. Scientific Reports 5: 1–8.
Mazza, A.-M., and S. Kendall. 2016. Making the Living World Engineerable: Science, Practice, and Policy: Proceedings of a Workshop—in Brief. Washington, D.C.: National Academies Press.
Mercy, G., J. Mozziconacci, V.F. Scolari, K. Yang, G. Zhao, A. Thierry, Y. Luo, L.A. Mitchell, M. Shen, Y. Shen, R. Walker, W. Zhang, Y. Wu, Z. Xie, Z. Luo, Y. Cai, J. Dai, H. Yang, Y.-J. Yuan, J.D. Boeke, J.S. Bader, H. Muller, and R. Koszul. 2017. 3D Organization of Synthetic and Scrambled Chromosomes. Science 355 (1050): 1–7.
Mitchell, L.A., A. Wang, G. Stracquadanio, Z. Kuang, X. Wang, K. Yang, S. Richardson, J.A. Martin, Y. Zhao, R. Walker, Y. Luo, H. Dai, K. Dong, Z. Tang, Y. Yang, Y. Cai, A. Heguy, B. Ueberheide, D. Fenyö, J. Dai, J.S. Bader, and J.D. Boeke. 2017. Synthesis, Debugging, and Effects of Synthetic Chromosome Consolidation: synVI and Beyond. Science 355 (1050): 1–11.
Mol, A. 2002. The Body Multiple. Durham: Duke University Press.
Molyneux-Hodgson, S., and M. Meyer. 2009. Tales of Emergence—Synthetic Biology as a Scientific Community in the Making. BioSocieties 4: 129–145.
National Academies of Sciences, Engineering, and Medicine. 2016. Making the Living World Engineerable: Science, Practice, and Policy: Proceedings of a Workshop—in Brief. Washington, DC: The National Academies Press. https://doi.org/10.17226/24656.
Nerlich, B., and I. Hellsten. 2009. Beyond the Human Genome: Microbes, Metaphors and What It Means to be Human in an Interconnected Post-genomic World. New Genetics and Society 28: 19–36.
Nicholson, D.J. 2013. Organisms ≠ Machines. Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 44: 669–678.
Nietzsche, F. 1992. Truth and Falsity in an Extramoral Sense. A Review of General Semantics 49: 58–72.
O’Malley, M.A., A. Powell, J.F. Davies, and J. Calvert. 2008. Knowledge-Making Distinctions in Synthetic Biology. BioEssays 30: 57–65.
Palsson, B. 2000. The Challenges of In Silico Biology. Nature Biotechnology 18: 1147–1150.
Paxson, H., and S. Helmreich. 2014. The Perils and Promises of Microbial Abundance: Novel Natures and Model Ecosystems, from Artisanal Cheese to Alien Seas. Social Studies of Science 44: 165–193.
Porcar, M., and J. Peretó. 2012. Are We Doing Synthetic Biology? Systems and Synthetic Biology 6: 79–83.
Pragglejaz Group. 2007. MIP: A Method for Identifying Metaphorically Used Words in Discourse. Metaphor and Symbol 22 (1): 1–39.
Rheinberger, H.-J. 2005. A Reply to David Bloor: “Toward a Sociology of Epistemic Things”. Perspectives on Science 13: 406–410.
Richardson, S.M., L.A. Mitchell, G. Stracquadanio, K. Yang, J.S. Dymond, J.E. DiCarlo, D. Lee, C.L.V. Huang, S. Chandrasegaran, Y. Cai, J.D. Boeke, and J.S. Bader. 2017. Design of a Synthetic Yeast Genome. Science 355 (1050): 1040–1044.
Semino, E. 2008. Metaphor in Discourse. Cambridge: Cambridge University Press.
Shen, Y., G. Stracquadanio, Y. Wang, K. Yang, L.A. Mitchell, Y. Xue, Y. Cai, T. Chen, J.S. Dymond, K. Kang, J. Gong, X. Zeng, Y. Zhang, Y. Li, Q. Feng, X. Xu, J. Wang, J. Wang, H. Yang, J.D. Boeke, and J.S. Bader. 2016. SCRaMbLE Generates Designed Combinatorial Stochastic Diversity in Synthetic Chromosomes. Genome Research 26 (1): 36–49.
Shen, Y., Y. Wang, T. Chen, F. Gao, J. Gong, D. Abramczyk, R. Walker, H. Zhao, S. Chen, W. Liu, Y. Luo, C.A. Müller, A. Paul-Dubois-Taine, B. Alver, G. Stracquadanio, L.A. Mitchell, Z. Luo, Y. Fan, B. Zhou, B. Wen, F. Tan, Y. Wang, J. Zi, Z. Xie, B. Li, K. Yang, S.M. Richardson, H. Jiang, C.E. French, C.A. Nieduszynski, R. Koszul, A.L. Marston, Y. Yuan, J. Wang, J.S. Bader, J. Dai, J.D. Boeke, X. Xu, Y. Cai, H. Yang. 2017. Deep functional analysis of synII, a 770-kilobase synthetic yeast chromosome. Science 355 (6329): eaaf4791.
Shetty, R.P., D. Endy, and T.F. Knight. 2008. Engineering BioBrick Vectors from BioBrick Parts. Journal of Biological Engineering 2: 5.
Stein, R. 2017. Scientists Closer to Creating a Fully Synthetic Yeast Genome. NPR.org, 9 March.
Stelmach, A., and B. Nerlich. 2015. Metaphors in Search of a Target: The Curious Case of Epigenetics. New Genetics and Society 34: 196–218.
UK Synthetic Biology Coordination Group. 2012. A Synthetic Biology Roadmap for the UK. Swindon: Technology Strategy Board. http://www.rcuk.ac.uk/documents/publications/SyntheticBiologyRoadmap.pdf. Accessed 27 Dec 2016.
Valve, H., and R. McNally. 2012. Articulating Scientific Practice with PROTEE: STS, Loyalties, and the Limits of Reflexivity. Science, Technology and Human Values 38 (4): 470–491.
Walker, R.S.K. 2017. De Novo Biological Engineering of a tRNA Neochromosome in Yeast. PhD thesis, University of Edinburgh, Edinburgh, UK.
Wu, Y., B.-Z. Li, M. Zhao, L.A. Mitchell, Z.-X. Xie, Q.-H. Lin, X. Wang, W.-H. Xiao, Y. Wang, X. Zhou, H. Liu, X. Li, M.-Z. Ding, D. Liu, L. Zhang, B.-L. Liu, X.-L. Wu, F.-F. Li, X.-T. Dong, B. Jia, W.-Z. Zhang, G.-Z. Jiang, Y. Liu, X. Bai, T.-Q. Song, Y. Chen, S.-J. Zhou, R.-Y. Zhu, F. Gao, Z. Kuang, X. Wang, M. Shen, K. Yang, G. Stracquadanio, S.M. Richardson, Y. Lin, L. Wang, R. Walker, Y. Luo, P.-S. Ma, H. Yang, Y. Cai, J. Dai, J.S. Bader, J.D. Boeke, and Y.-J. Yuan. 2017. Bug Mapping and Fitness Testing of Chemically Synthesized Chromosome X. Science 355 (1050): 1–6.
Xie, Z.-X., B.-Z. Li, L.A. Mitchell, Y. Wu, X. Qi, Z. Jin, B. Jia, X. Wang, B.-X. Zeng, H.-M. Liu, X.-L. Wu, Q. Feng, W.-Z. Zhang, W. Liu, M.-Z. Ding, X. Li, G.-R. Zhao, J.-J. Qiao, J.-S. Cheng, M. Zhao, Z. Kuang, X. Wang, J.A. Martin, G. Stracquadanio, K. Yang, X. Bai, J. Zhao, M.-L. Hu, Q.-H. Lin, W.-Q. Zhang, M.-H. Shen, S. Chen, W. Su, E.-X. Wang, R. Guo, F. Zhai, X.-J. Guo, H.-X. Du, J.-Q. Zhu, T.-Q. Song, J.-J. Dai, F.-F. Li, G.-Z. Jiang, S.-L. Han, S.-Y. Liu, Z.-C. Yu, X.-N. Yang, K. Chen, C. Hu, D.-S. Li, N. Jia, Y. Liu, L.-T. Wang, S. Wang, X.-T. Wei, M.-Q. Fu, L.-M. Qu, S.-Y. Xin, T. Liu, K.-R. Tian, X.-N. Li, J.-H. Zhang, L.-X. Song, J.-G. Liu, J.-F. Lv, H. Xu, R. Tao, Y. Wang, T.-T. Zhang, Y.-X. Deng, Y.-R. Wang, T. Li, G.-X. Ye, X.-R. Xu, Z.-B. Xia, W. Zhang, S.-L. Yang, Y.-L. Liu, W.-Q. Ding, Z.-N. Liu, J.-Q. Zhu, N.-Z. Liu, R. Walker, Y. Luo, Y. Wang, Y. Shen, H. Yang, Y. Cai, P.-S. Ma, C.-T. Zhang, J.S. Bader, J.D. Boeke, and Y.-J. Yuan. 2017. “Perfect” Designer Chromosome V and Behavior of a Ring Derivative. Science 355 (1050): 1–7.
Zhang, W., G. Zhao, Z. Luo, Y. Lin, L. Wang, Y. Guo, A. Wang, S. Jiang, Q. Jiang, J. Gong, Y. Wang, S. Hou, J. Huang, T. Li, Y. Qin, J. Dong, Q. Qin, J. Zhang, X. Zou, X. He, L. Zhao, Y. Xiao, M. Xu, E. Cheng, N. Huang, T. Zhou, Y. Shen, R. Walker, Y. Luo, Z. Kuang, L.A. Mitchell, K. Yang, S.M. Richardson, Y. Wu, B.-Z. Li, Y.-J. Yuan, H. Yang, J. Lin, G.-Q. Chen, Q. Wu, J.S. Bader, Y. Cai, J.D. Boeke, and J. Dai. 2017. Engineering the Ribosomal DNA in a Megabase Synthetic Chromosome. Science 355 (1050): 1–7.
Acknowledgements
This work was supported through grants from the Biological and Biotechnological Sciences Research Council (BB/M005690/1, ERASynBio-IESY) and the European Research Council (ERC 616510-ENLIFE). I gratefully acknowledge the research foundations and ongoing assistance of the “Engineering Life” team led by Jane Calvert and including Dominic Berry, Emma Frow, Pablo Schyfter, Deborah Scott, and Robert Smith.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
I confirm that the attached manuscript is composed of original material not under review elsewhere and that the study on which the research is based has been subject to appropriate ethical review. I have no competing interest—intellectual or financial—in the research detailed in the manuscript.
Rights and permissions
About this article
Cite this article
Szymanski, E.A. Remaking yeast: Metaphors as scientific tools in Saccharomyces cerevisiae 2.0. BioSocieties 14, 416–437 (2019). https://doi.org/10.1057/s41292-018-0134-z
Published:
Issue Date:
DOI: https://doi.org/10.1057/s41292-018-0134-z
Keywords
- Synthetic biology
- Yeast
- Genomes
- Metaphors
- Discourse analysis