Skip to main content
Log in

Common shock approach to counterparty default risk of reinsurance

  • Original Article
  • Published:
Risk Management Aims and scope Submit manuscript

Abstract

The paper deals with the construction of required capital to cover the default risk in portfolios with a smaller number of heterogeneous counterparties. The typical application is counterparty default risk of reinsurance (e.g., in Solvency II), but other applications in finance are also possible. Since the approach by means of Vasicek portfolio model is questionable in such cases the paper addresses mainly the approach based on the so-called common shock principle. An extensive numerical study compares results of various methods which are applicable in this context. The numerical results confirm that the suggested modifications of the widely accepted common shock approach implemented within the Solvency II framework might be preferred by insurance companies when constructing the portfolio of reinsurers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Artzner, P., et al. 1999. Coherent measures of risk. Mathematical Finance 9: 203–228.

    Article  Google Scholar 

  • Basel II. 2006. International convergence of capital measurements and capital standards. Basel: Basel Committee on Banking Supervision.

    Google Scholar 

  • Basel III. 2010. A global regulatory framework for more resilient banks and banking systems. Basel: Bank for International Settlements.

    Google Scholar 

  • Benink, H.A., N. Hyung, and C.G. de Vries. 2013. Evaluation of bank systemic risk. The economics of banking and finance documents. Tilburg: Tilburg University.

    Google Scholar 

  • Britt, S., and Y. Krvavych. 2009. Reinsurance credit risk modeling. Manchester: ASTIN Colloquium.

    Google Scholar 

  • CEIOPS’ advice for level 2 implementing measures on Solvency II: SCR standard formula—Counterparty default risk module. 2009. https://eiopa.europa.eu/CEIOPS-Archive/Documents/Advices/CEIOPS-L2-Final-Advice-SCR-SF-Counterparty-default-risk.pdf. Accessed 15 Jan 2018.

  • Cipra, T. 2010. Financial and insurance formulas. New York: Springer.

    Book  Google Scholar 

  • Cipra, T., and R. Hendrych. 2017. Systemic risk in financial risk regulation. Czech Journal of Economics and Finance 67: 15–38.

    Google Scholar 

  • Flower, M., et al. 2007. Reinsurance counterparty credit risks. London: GIRO Working Party, Institute of Actuaries (UK).

    Google Scholar 

  • Hürlimann, W. 2003. Conditional value-at-risk bounds for compound Poisson risks and a normal approximation. Journal of Applied Matematics 3: 141–154.

    Article  Google Scholar 

  • Hürlimann, W. 2008. Solvency reinsurance counterparty default risk. Life & Pension, 39–44.

  • McNeil, A.J., R. Frey, and P. Embrechts. 2005. Quantitative risk management. Princeton: Princeton University Press.

    Google Scholar 

  • QIS3. 2007. Calibration of the credit risk. CEIOPS quantitative impact study 3. http://www.ceiops.org. Accessed 15 Jan 2018.

  • QIS4. 2008. Technical specifications. CEIOPS quantitative impact study 4. http://www.ceiops.org. Accessed 15 Jan 2018.

  • QIS5. 2011. Report. EIOPA quantitative impact study 5. https://eiopa.europa.eu/publications/reports/qis5_report_final.pdf. Accessed 15 Jan 2018.

  • Quick, R. and D. Weglarz. 2012. Reinsurance default risk. Gen Re, Insurance Issues. http://media.genre.com/documents/InsuranceIssues201210-en.pdf. Accessed 15 Jan 2018.

  • Sachs, R. 2009. Reinsurance credit risk. Technical report, 267–285. Munich: Munich Re Group.

  • Sandström, A. 2011. Handbook of solvency for actuaries and risk managers. Theory and practice. Boca Raton: Chapman and Hall/CRC Press.

    Google Scholar 

  • Solvency II. 2009. Directive on the taking-up and pursuit of the business of insurance and reinsurance. Directive 2009/138/EC of the European Parliament and of the Council 2009.

  • ter Berg, P. 2008. Portfolio modelling of counterparty reinsurance default risk. Life & Pension, 29–33.

  • Vasicek, O.A. 2002. The distribution of loan portfolio value. Risk 15: 160–162.

    Google Scholar 

Download references

Acknowledgements

This research was supported by the grant 17–00676S provided by the Grant Agency of the Czech Republic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radek Hendrych.

Appendix

Appendix

Derivation of (17)

For instance, to derive σij for i ≠ j one can write using (13):

$$\begin{aligned} \sigma_{ij} & = \text{cov} (I_{i} ,I_{j} ) = E(I_{i} ,I_{j} ) - E(I_{i} ) \cdot E(I_{j} ) = E(I_{i} ,I_{j} ) - {\text{PD}}_{i} \cdot {\text{PD}}_{j} \\ & = \int\limits_{0}^{1} {[p_{i} + (1 - p_{i} )r^{{\gamma \;/p_{i} }} ][p_{j} + (1 - p_{j} )r^{{\gamma \;/p_{j} }} ]\beta r^{\beta - 1} {\text{d}}s} - \frac{{(\gamma + \beta )p_{i} }}{{\gamma + \beta p_{i} }} \cdot \frac{{(\gamma + \beta )p_{j} }}{{\gamma + \beta p_{j} }} \\ & = \frac{{\beta (1 - p_{i} ) (1 - p_{j} )}}{{\beta + \gamma p_{i}^{ - 1} + \gamma p_{j}^{ - 1} }} - ({\text{PD}}_{i} - p_{i} ) ({\text{PD}}_{j} - p_{j} ). \\ \end{aligned}$$

The derivation for i = j is analogous.

Derivation of (24)

$$\begin{aligned} P(L = 0) & = P(I_{1} = 1 \cap I_{2} = 0) = \int\limits_{0}^{1} {\text{[}1 - {\text{PD}}_{1} (r)\text{][}1 - {\text{PD}}_{2} (r)\text{]}f(r){\text{d}}r} \\ & = \int\limits_{0}^{1} {[1 - p_{1} - (1 - p_{1} )r^{{\gamma \;/p_{1} }} ][1 - p_{2} - (1 - p_{2} )r^{{\gamma \;/p_{2} }} ]\;\beta r^{\beta - 1} {\text{d}}r} \\ & = (1 - p_{1} )(1 - p_{2} )\left[ {1 - \frac{\beta }{{\gamma /p_{1} + \beta }} - \frac{\beta }{{\gamma /p_{2} + \beta }} + \frac{\beta }{{\gamma /p_{1} + \gamma /p_{2} + \beta }}} \right]. \\ \end{aligned}$$

Derivation of (26)

$$\begin{aligned} {\text{ES}}(L\left| {R \ge C)} \right. & = \sum\limits_{i = 1}^{k} {{\text{LGD}}_{i} \cdot E(I_{i} \left| {R \ge C)} \right.} \\ & = \sum\limits_{i = 1}^{k} {\frac{{{\text{LGD}}_{i} }}{P(R \ge C)}\int\limits_{C}^{1} {{\text{PD}}_{i} (r)f(r){\text{d}}r} } \\ & = \sum\limits_{i = 1}^{k} {\frac{{{\text{LGD}}_{i} }}{P(R \ge C)}\int\limits_{C}^{1} {[p_{i} + (1 - p_{i} )r^{{\gamma \;/p_{i} }} ]\;\beta r^{\beta - 1} {\text{d}}r} } \\ & = \sum\limits_{i = 1}^{k} {\frac{{{\text{LGD}}_{i} }}{P(R \ge C)}\left\{ {p_{i} (1 - C^{\beta } ) + \frac{{\beta (1 - p_{i} )}}{{\gamma /p_{i} + \beta }}[1 - C^{{\gamma /p_{i} + \beta }} ]} \right\}} \\ & = \sum\limits_{i = 1}^{k} {\frac{{{\text{LGD}}_{i} }}{P(R \ge C)}\left\{ {\frac{{(\gamma + \beta )p_{i} }}{{\gamma + \beta p_{i} }}(1 - C^{{\gamma /p_{i} + \beta }} ) + p_{i} (C^{{\gamma /p_{i} + \beta }} - C^{\beta } )} \right\}.} \\ \end{aligned}$$

Derivation of (27)

It holds

$$P(R \ge C) = \int\limits_{C}^{1} {\beta r^{\beta - 1} {\text{d}}r} = 1 - C^{\beta } .$$

Hence

$$P(R \ge \alpha^{1/\beta } ) = 1 - \alpha$$

so that (27) is proved.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hendrych, R., Cipra, T. Common shock approach to counterparty default risk of reinsurance. Risk Manag 21, 123–151 (2019). https://doi.org/10.1057/s41283-018-0045-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1057/s41283-018-0045-0

Keywords

Mathematical Subject Classification

Navigation