Skip to main content

The optimal assignment of spontaneous volunteers

Abstract

Spontaneous volunteers are ordinary citizens who assist in disaster relief efforts, while they are a great resource they also pose a difficult logistical challenge. Unlike classical labor assignment problems, the management of these volunteers is characterized by uncertainty regarding the size, availability, and commitment of the labor pool. We model this problem as a multi-server queueing system with both stochastic server arrival and abandonment. This model is intended to be applied to the relatively stable work associated with recovery efforts, e.g., debris clearing. We model this system as a continuous time Markov decision process and compare the optimal policy to several common-sense heuristics; one of which performs close to optimal and makes a practical alternative. We conduct extensive sensitivity analysis around model parameters and assumptions.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3

Notes

  1. In all cases examined, a discount factor of \(\alpha =0.03\) was used. This value was chosen because it is widely accepted in economic evaluation for developed countries and is recommended by the US Panel on Cost-Effectiveness in Health and Medicine (Siegel et al, 1997).

  2. Details of the percentage of states for which the MDP policy matched the FV or LD policy for several examples can be found in Wolczynski (2015).

References

  • Akgun OT, Righter R, Wolff R et al. (2011). Multiple-server system with flexible arrivals. Advances in Applied Probability, 43(4):985–1004.

    Article  Google Scholar 

  • Alagoz O, Maillart LM, Schaefer AJ and Roberts MS (2004). The optimal timing of living-donor liver transplantation. Management Science, 50(10):1420–1430.

    Article  Google Scholar 

  • Altay N and Green WG (2006). OR/MS research in disaster operations management. European Journal of Operational Research, 175(1):475–493.

    Article  Google Scholar 

  • Andradóttir S, Ayhan H and Kirkizlar E (2012). Flexible servers in tandem lines with setup costs. Queueing Systems, 70(2):165–186.

    Article  Google Scholar 

  • Aramugam R, Mayorga ME and Taaffe KM (2009). Inventory based allocation policies for flexible servers in serial systems. Annals of Operations Research, 172(1):1–23.

    Article  Google Scholar 

  • Bertsekas DP (2007). Dynamic Programming and Optimal Control (3rd edn), vol 2. Belmont: Athena Scientific.

    Google Scholar 

  • Caunhye AM, Nie X and Pokharel S (2012). Optimization models in emergency logistics: A literature review. Socio-Economic Planning Sciences, 46(1):4–13.

    Article  Google Scholar 

  • Coppola DP (2015). Introduction to International Disaster Management (3rd edn). Oxford: Butterworth-Heinemann.

    Google Scholar 

  • Falasca M and Zobel C (2012). An optimization model for volunteer assignments in humanitarian organizations. Socio-Economic Planning Sciences, 46(4):250–260.

    Article  Google Scholar 

  • Fernandez L, Barbera J and Van Dorp J (2006). Strategies for managing volunteers during incident response: A systems approach. Homeland Security Affairs, 12, Article 9.

  • Galindo G and Batta R (2013). Review of recent developments in or/ms research in disaster operations management. European Journal of Operational Research, 230(2):201–211.

    Article  Google Scholar 

  • Glass TA (2001). Understanding public response to disasters. Public Health Reports, 116(Suppl 2):69–73.

    Article  Google Scholar 

  • Green L and Savin S (2008) Reducing delays for medical appointments: A queueing approach. Operations Research, 56(6):1526–1538.

    Article  Google Scholar 

  • Habib MS, Lee YH and Memon MS (2016). Mathematical models in humanitarian supply chain management: A systematic literature review. Mathematical Problems in Engineering. doi:10.1155/2016/3212095.

  • Hoyos MC, Morales RS and Akhavan-Tabatabaei R (2015). OR models with stochastic components in disaster operations management: A literature survey. Computers & Industrial Engineering, 82:183–197.

    Article  Google Scholar 

  • Johri PK (1989). Optimality of the shortest line discipline with state-dependent service rates. European Journal of Operational Research, 41(2):157–161.

    Article  Google Scholar 

  • Ke J-C, Lin C-H, Huang H-I and Zhang ZG (2011). An algorithmic analysis of multi-server vacation model with service interruptions. Computers & Industrial Engineering, 61(4):1302–1308.

    Article  Google Scholar 

  • Krishnamoorthy A, Pramod P and Chakravarthy S (2014). Queues with interruptions: A survey. TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, 22(1):290–320.

    Article  Google Scholar 

  • Lassiter K, Alwahishie A and Taaffe K (2014). Improving volunteer productivity and retention during humanitarian relief efforts. International Journal of Supply Chain Management, 3(2):1–10.

  • Lassiter K, Khademi A and Taaffe KM (2015). A robust optimization approach to volunteer management in humanitarian crises. International Journal of Production Economics, 163:97–111.

    Article  Google Scholar 

  • Lodree E and Davis L (2016). Empirical analysis of volunteer convergence following the 2011 tornado disaster in Tuscaloosa, Alabama. Natural Hazards, 84(2):1109–1135.

    Article  Google Scholar 

  • Lowe S and Fothergill A (2003). A need to help: Emergent volunteer behavior after September 11th. In: Beyond September 11th: An Account of Post-Disaster Research (pp. 293–314). Boulder: University of Colorado Boulder.

  • Mayorga ME, Aramugam R and Taaffe KM (2009). Allocating flexible servers in serial systems with switching costs. Annals of Operations Research, 172(1):231–242.

    Article  Google Scholar 

  • Puterman ML (2005). Markov Decision Processes: Discrete Stochastic Dynamic Programming. Hoboken: Wiley.

    Google Scholar 

  • Sampson SE (2006). Optimization of volunteer labor assignments. Journal of Operations Management, 24(4):363–377.

    Article  Google Scholar 

  • Siegel JE, Torrance GW, Russell LB, Luce BR, Weinstein MC, Gold MR et al. (1997). Guidelines for pharmacoeconomic studies. Recommendations from the panel on cost effectiveness in health and medicine. Panel on cost effectiveness in health and medicine. Pharmacoeconomics, 11(2):159–168.

    Article  Google Scholar 

  • Weber R (1978). On the optimal assignment of customers to parallel servers. Journal of Applied Probability, 15(2):406–413.

    Article  Google Scholar 

  • Winston W (1977). Optimality of the shortest line discipline. Journal of Applied Probability, 14(1):181–189.

    Article  Google Scholar 

  • Wolczynski J (2015). The Optimal Assignment of Spontaneous Volunteers. Master’s thesis, North Carolina State University, Raleigh, NC, USA.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria E. Mayorga.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mayorga, M.E., Lodree, E.J. & Wolczynski, J. The optimal assignment of spontaneous volunteers. J Oper Res Soc 68, 1106–1116 (2017). https://doi.org/10.1057/s41274-017-0219-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1057/s41274-017-0219-2

Keywords

  • volunteer assignment
  • disaster operations management
  • Markov decision process