Skip to main content
Log in

Time consistent behavioral portfolio policy for dynamic mean–variance formulation

  • Published:
Journal of the Operational Research Society

Abstract

When one considers an optimal portfolio policy under a mean-risk formulation, it is essential to correctly model investors’ risk aversion which may be time variant or even state dependent. In this paper, we propose a behavioral risk aversion model, in which risk aversion is a piecewise linear function of the current excess wealth level with a reference point at the discounted investment target (either surplus or shortage), to reflect a behavioral pattern with both house money and break-even effects. Due to the time inconsistency of the resulting multi-period mean–variance model with adaptive risk aversion, we investigate the time consistent behavioral portfolio policy by solving a nested mean–variance game formulation. We derive a semi-analytical time consistent behavioral portfolio policy which takes a piecewise linear feedback form of the current excess wealth level with respect to the discounted investment target. Finally, we extend the above results to time consistent behavioral portfolio selection for dynamic mean–variance formulation with a cone constraint.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

Notes

  1. Our main results can be readily extended to situations where random vectors \(\mathbf {e}_t, t = 0, 1, \ldots , T - 1\) are correlated. This extension can be achieved based on the concept of the so-called opportunity-neutral measure introduced by Černý and Kallsen (2009).

  2. When starting from the domain \(X_0 \ge \rho _0^{-1}W\), the positive risk aversion coefficient \(\gamma ^+\) would have a higher impact on the global investment performance.

References

  • Artzner P, Delbaen F, Eber JM, Heath D and Ku H (2007). Coherent multiperiod risk adjusted values and Bellman’s principle. Annals of Operations Research 152(1):5–22.

    Article  Google Scholar 

  • Basak S and Chabakauri G (2010). Dynamic mean–variance asset allocation. Review of Financial Studies 23(8):2970–3016.

    Article  Google Scholar 

  • Björk T, Murgoci A and Zhou XY (2014). Mean–variance portfolio optimization with state dependent risk aversion. Mathematical Finance 24(1):1–24.

    Article  Google Scholar 

  • Boda K and Filar JA (2006). Time consistent dynamic risk measures. Mathematical Methods of Operations Research 63(1):169–186.

    Article  Google Scholar 

  • Černý A and Kallsen J (2009). Hedging by sequential regressions revisited. Mathematical Finance 19(4):591–617.

    Article  Google Scholar 

  • Cui XY, Gao JJ, Li X and Li D (2014). Optimal multi-period mean–variance policy under no-shorting constraint. European Journal of Operational Research 234(2):459–468.

    Article  Google Scholar 

  • Cui XY, Li D and Li X (2015). Mean–variance policy for discrete-time cone-constrained markets: Time consistency in efficiency and the minimum-variance signed supermartingale measure. Mathematical Finance. doi:10.1111/mafi.12093.

  • Cui XY, Li D, Wang SY and Zhu SS (2012). Better than dynamic mean–variance: Time inconsistency and free cash flow stream. Mathematical Finance 22(2):346–378.

    Article  Google Scholar 

  • Cuoco D (1997). Optimal consumption and equilibrium prices with portfolio cone constraints and stochastic labor income. Journal of Economic Theory 72(1):33–73.

    Article  Google Scholar 

  • Elton EJ, Gruber MJ, Brown SJ and Goetzmann WN (2007). Modern portfolio theory and investment analysis. Wiley, New York.

    Google Scholar 

  • Horst R and Thoai NV (1999). DC programming: Overview. Journal of Optimization Theory and Applications 103(1):1–43.

    Article  Google Scholar 

  • Hu Y, Jin HQ and Zhou XY (2012). Time-inconsistent stochastic linear-quadratic control. SIAM Journal on Control and Optimization 50(3):1548–1572.

    Article  Google Scholar 

  • Jobert A and Rogers LC (2008). Valuations and dynamic convex risk measures. Mathematical Finance 18(1):1–22.

    Article  Google Scholar 

  • Li D and Ng WL (2000). Optimal dynamic portfolio selection: Multiperiod mean–variance formulation. Mathematical Finance 10(3):387–406.

    Article  Google Scholar 

  • Li X, Zhou XY and Lim AEB (2001). Dynamic mean–variance portfolio selection with no-shorting constraints. SIAM Journal on Control and Optimization 40(5):1540–1555.

    Article  Google Scholar 

  • Markowitz HM (1952). Portfolio selection. Journal of Finance 7(1):77–91.

    Google Scholar 

  • Napp C (2003). The Dalang–Morton–Willinger theorem under cone constraints. Journal of Mathematical Economics 39(1):111–126.

    Article  Google Scholar 

  • Rosazza Gianin E (2006). Risk measures via g-expectations. Insurance: Mathematics and Economics 39(1):19–34.

    Google Scholar 

  • Shi Y, Cui XY, Yao J and Li D (2015). Dynamic trading with reference point adaptation and loss aversion. Operations Research 63(4):789–806.

    Article  Google Scholar 

  • Staw BM (1976). Knee-deep in the big muddy: A study of escalating commitment to a chosen course of action. Organizational Behavior and Human Performance 16(1):27–44.

    Article  Google Scholar 

  • Strotz RH (1956). Myopia and inconsistency in dynamic utility maximization. The Review of Economic Studies 23(3):165–180.

    Article  Google Scholar 

  • Thaler RH and Johnson EJ (1990). Gambling with the house money and trying to break even: The effects of prior outcomes on risky choice. Management Science 36(6):643–660.

    Article  Google Scholar 

  • Wang J and Forsyth PA (2011). Continuous time mean variance asset allocation: A time-consistent strategy. European Journal of Operational Research 209(2):184–201.

    Article  Google Scholar 

  • Weber M and Zuchel H (2005). How do prior outcomes affect risk attitude? Comparing escalation of commitment and the house-money effect. Decision Analysis 2(1):30–43.

    Article  Google Scholar 

  • Wu HL (2013). Time-consistent strategies for a multiperiod mean–variance portfolio selection problem. Journal of Applied Mathematics. doi:10.1155/2013/841627.

  • Yong JM (2015). Linear-quadratic optimal control problems for mean-field stochastic differential equations—Time-consistent solutions. Transactions of the American Mathematical Society, doi:10.1090/tran/6502.

Download references

Acknowledgements

The authors thank the associate editor and one anonymous referee for their valuable and constructive comments and suggestions. This work was partially supported by National Natural Science Foundation of China under Grants 71601107, 71671106, 71201094, by the State Key Program in the Major Research Plan of National Natural Science Foundation of China under Grant 91546202, by Research Grants Council of Hong Kong under Grants 414513, 14204514, 15209614, 15224215 and 15255416, by Shanghai Pujiang Program under Grant 15PJC051. The third author is also grateful to the support from the Patrick Huen Wing Ming Chair Professorship of Systems Engineering and Engineering Management.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun Shi.

Appendices

Appendix 1: The Proof of Proposition 3.1

Proof

Define \(\xi =\Vert \mathbf {K}\Vert ,\,\mathbf {L}=\mathbf {K}\xi ^{-1}\) (which implies \(\Vert \mathbf {L}\Vert =1\)) and \(y_t=\mathbf {P}_t'\mathbf {L}\). Then, for any \(\mathbf {L}\), we have \(M\ge \text{ Var }(y_t)=\mathbf {L}'\text{ Cov }(\mathbf {P}_t)\mathbf {L}>0\), where M is the largest eigenvalue of \(\text{ Cov }(\mathbf {P}_t)\).

If \(y_t1_{\{y_t\ge 0\}}\) is zero, (i.e., \(y_t\le 0\) almost surely), we can construct an arbitrage portfolio by shorting \(\mathbf {L}\) and holding \(\mathbf {L}'\mathbf {1}\) risk-free asset. Similarly, if \(y_t1_{\{y_t< 0\}}\) is zero, (i.e., \(y_t\ge 0\) almost surely), we also can construct an arbitrage portfolio by holding \(\mathbf {L}\) and shorting \(\mathbf {L}'\mathbf {1}\) risk-free asset. Thus, we conclude that \(y_t1_{\{y_t\ge 0\}}\) and \(y_t1_{\{y_t< 0\}}\) are nontrivial random variables with finite second moment.

Moreover, \(\mathbf {P}_t\) is absolutely integrable, so do \(y_t,\,y_t1_{\{y_t\ge \frac{-s_t}{\xi }\}}\) and \(y_t1_{\{y_t< \frac{-s_t}{\xi }\}}\). Then, for given \(\mathbf {L}\), we have

$$\begin{aligned} F_t^+(\mathbf {K})=\tilde{F}_t^+(\xi ), \end{aligned}$$

where

$$\begin{aligned} \tilde{F}_t^+(\xi )&= \, \rho _{t+1}^2\text{ Var }(y_t)\xi ^2+{\mathbb{E}}\left[ (2\rho _{t+1}a_{t+1}^+ + b_{t+1}^+)(s_t+\xi y_t)^21_{\{y_t\ge \frac{-s_t}{\xi }\}}\right] \\&\quad +\,{\mathbb{E}}\left[ (2\rho _{t+1}a_{t+1}^- + b_{t+1}^-)(s_t+\xi y_t)^21_{\{y_t< \frac{-s_t}{\xi }\}}\right] \\&\quad -\,\left( {\mathbb{E}}\left[ a_{t+1}^+(s_t+\xi y_t)1_{\{y_t\ge \frac{-s_t}{\xi }\}}\right] +{\mathbb{E}}\left[ a_{t+1}^-(s_t+\xi y_t)1_{\{y_t< \frac{-s_t}{\xi }\}}\right] \right) ^2\\&\quad -\,2\rho _{t+1} \left( {\mathbb{E}}\left[ a_{t+1}^+(s_t+\xi y_t)1_{\{y_t\ge \frac{-s_t}{\xi }\}}\right] +{\mathbb{E}}\left[ a_{t+1}^-(s_t+\xi y_t)1_{\{y_t< \frac{-s_t}{\xi }\}}\right] \right) (s_t+{\mathbb{E}}[y_t]\xi )\\&\quad -\,\gamma _t^+\left( {\mathbb{E}}\left[ a_{t+1}^+(s_t+\xi y_t)1_{\{y_t\ge \frac{-s_t}{\xi }\}}\right] +{\mathbb{E}}\left[ a_{t+1}^-(s_t+\xi y_t)1_{\{y_t<\frac{-s_t}{\xi }\}}\right] \right) \\&\quad -\,\rho _{t+1}\gamma _t^+(s_t+{\mathbb{E}}[y_t]\xi ). \end{aligned}$$

Furthermore, we have

$$\begin{aligned} \tilde{F}_t^+(\xi )&\ge \,\rho _{t+1}^2\text{ Var }(y_t)\xi ^2+(a_{t+1}^+)^2{\mathbb{E}}\left[ y_t^21_{\{y_t\ge \frac{-s_t}{\xi }\}}\right] \xi ^2+(a_{t+1}^-)^2{\mathbb{E}}\left[ y_t^21_{\{y_t< \frac{-s_t}{\xi }\}}\right] \xi ^2\\&\quad -\,\left( a_{t+1}^+{\mathbb{E}}\left[ y_t1_{\{y_t\ge \frac{-s_t}{\xi }\}}\right] \xi +a_{t+1}^-{\mathbb{E}}\left[ y_t1_{\{y_t< \frac{-s_t}{\xi }\}}\right] \xi \right) ^2\\&\quad +\,2\rho _{t+1}\left( a_{t+1}^+{\mathbb{E}}\left[ y_t^21_{\{y_t\ge \frac{-s_t}{\xi }\}}\right] \xi ^2+a_{t+1}^-{\mathbb{E}}\left[ y_t^21_{\{y_t< \frac{-s_t}{\xi }\}}\right] \xi ^2\right) \\&\quad -\,2\rho _{t+1}\left( a_{t+1}^+{\mathbb{E}}\left[ y_t1_{\{y_t\ge \frac{-s_t}{\xi }\}}\right] +a_{t+1}^-{\mathbb{E}}\left[ y_t1_{\{y_t< \frac{-s_t}{\xi }\}}\right] \right) {\mathbb{E}}[y_t]\xi ^2+O(\xi )\\&= \, \rho _{t+1}^2\text{ Var }\left( y_t1_{\{y_t\ge \frac{-s_t}{\xi }\}}\right) \xi ^2+\rho _{t+1}^2\text{ Var }\left( y_t1_{\{y_t< \frac{-s_t}{\xi }\}}\right) \xi ^2\\&\quad +\,2\rho _{t+1}^2\left( {\mathbb{E}}\left[ y_t1_{\{y_t\ge \frac{-s_t}{\xi }\}} y_t1_{\{y_t< \frac{-s_t}{\xi }\}}\right] -{\mathbb{E}}\left[ y_t1_{\{y_t\ge \frac{-s_t}{\xi }\}}\right] {\mathbb{E}}\left[ y_t1_{\{y_t< \frac{-s_t}{\xi }\}}\right] \right) \xi ^2\\&\quad +\,(a_{t+1}^+)^2\text{ Var }\left( y_t1_{\{y_t\ge \frac{-s_t}{\xi }\}}\right) \xi ^2+(a_{t+1}^-)^2\text{ Var }\left( y_t1_{\{y_t< \frac{-s_t}{\xi }\}}\right) \xi ^2\\&\quad +\,2a_{t+1}^+a_{t+1}^-\left( {\mathbb{E}}\left[ y_t1_{\{y_t\ge \frac{-s_t}{\xi }\}} y_t1_{\{y_t< \frac{-s_t}{\xi }\}}\right] -{\mathbb{E}}\left[ y_t1_{\{y_t\ge \frac{-s_t}{\xi }\}}\right] {\mathbb{E}}\left[ y_t1_{\{y_t< \frac{-s_t}{\xi }\}}\right] \right) \xi ^2\\&\quad +\,2\rho _{t+1}\left( a_{t+1}^+\text{ Var }\left( y_t1_{\{y_t\ge \frac{-s_t}{\xi }\}}\right) \xi ^2+a_{t+1}^-\text{ Var }\left( y_t1_{\{y_t< \frac{-s_t}{\xi }\}}\right) \xi ^2\right) \\&\quad +\,2\rho _{t+1}a_{t+1}^+\left( {\mathbb{E}}\left[ y_t1_{\{y_t\ge \frac{-s_t}{\xi }\}} y_t1_{\{y_t< \frac{-s_t}{\xi }\}}\right] -{\mathbb{E}}\left[ y_t1_{\{y_t\ge \frac{-s_t}{\xi }\}}\right] {\mathbb{E}}\left[ y_t1_{\{y_t< \frac{-s_t}{\xi }\}}\right] \right) \xi ^2\\&\quad +\,2\rho _{t+1}a_{t+1}^-\left( {\mathbb{E}}\left[ y_t1_{\{y_t\ge \frac{-s_t}{\xi }\}} y_t1_{\{y_t< \frac{-s_t}{\xi }\}}\right] -{\mathbb{E}}\left[ y_t1_{\{y_t\ge \frac{-s_t}{\xi }\}}\right] {\mathbb{E}}\left[ y_t1_{\{y_t< \frac{-s_t}{\xi }\}}\right] \right) \xi ^2 \\&\quad +\,O(\xi )\\&=\left[ \rho _{t+1}+a_{t+1}^+,\rho _{t+1}+a_{t+1}^-\right] \text{ Cov }\left[ \begin{array}{ll} y_t1_{\{y_t\ge \frac{-s_t}{\xi }\}}\\ y_t1_{\{y_t< \frac{-s_t}{\xi }\}} \end{array}\right] \left[ \begin{array}{ll} \rho _{t+1}+a_{t+1}^+\\ \rho _{t+1}+a_{t+1}^- \end{array}\right] \xi ^2 +O(\xi ), \end{aligned}$$

where \(O(\xi )\) is the infinity of the same order as \(\xi \) and the second equality holds due to the fact of \({\mathbb{E}}\left[ y_t1_{\{y_t\ge \frac{-s_t}{\xi }\}} y_t1_{\{y_t< \frac{-s_t}{\xi }\}}\right] =0\). Hence,

$$\begin{aligned}&\lim _{\xi \rightarrow +\infty }\tilde{F}_t^+(\xi )=\lim _{\xi \rightarrow +\infty }\left[ \rho _{t+1}+a_{t+1}^+,\rho _{t+1}+a_{t+1}^-\right] \text{ Cov }\left[ \begin{array}{ll} y_t1_{\{y_t\ge 0\}}\\ y_t1_{\{y_t< 0\}} \end{array}\right] \left[ \begin{array}{ll} \rho _{t+1}+a_{t+1}^+\\ \rho _{t+1}+a_{t+1}^- \end{array}\right] \xi ^2 \\&\quad +\, O(\xi )=+\infty . \end{aligned}$$

Based on the discussion for all possible \(\mathbf {L}\), we make our conclusion for \(F_t^+(\mathbf {K})\). Similarly we can prove the result of \(F_t^-(\mathbf {K})\). \(\square \)

Appendix 2: The Proof of Theorem 3.1

Proof

Let \(Y_t = X_t - \rho _t^{-1}W\). Then,

$$\begin{aligned} Y_{t+1}&= X_{t+1} - \rho _{t+1}^{-1}W \\&= s_tX_t + \mathbf {P}_t'\mathbf {u}_t - \rho _{t+1}^{-1}W \\&= s_t(X_t - \rho _t^{-1}W) + \mathbf {P}_t'\mathbf {u}_t \\&= s_tY_t + \mathbf {P}_t'\mathbf {u}_t, \end{aligned}$$

and \(\gamma _t(X_t)\) can be rewritten into

$$\begin{aligned} \gamma _t(X_t) = \hat{\gamma }_t(Y_t)=\left\{ \begin{array}{ll} \gamma _t^+ Y_t, &{}\quad \text{ if } Y_t \ge 0, \\ -\gamma _t^- Y_t, &{}\quad \text{ if } Y_t < 0. \end{array}\right. \end{aligned}$$

Also, we have \({\mathrm{Var}}_t(X_T)=\text{Var}_t(Y_T)\) according to the variance property. Hence, problem \(({\mathrm{MV}}_t(\gamma _t(X_t)))\) in (2) can be reduced into the following equivalent problem,

$$\begin{aligned} \min&\quad {\mathrm{Var}}_t(Y_T)- \hat{\gamma }_t(Y_t) {\mathbb{E}}_t[Y_T] - \hat{\gamma }_t(Y_t)W, \nonumber \\ \text{ s.t. }&~~ Y_{j+1} = s_jY_j+\mathbf {P}_j'\mathbf {u}_j, \quad j=t,t+1,\ldots ,T-1, \end{aligned}$$
(15)

where \({\mathrm{Var}}_t(Y_T)=\text{ Var }(Y_T|Y_t)\) and \({\mathbb{E}}_t[Y_T]={\mathbb{E}}[Y_T|Y_t]\).

At time t (\(t=0,1,\ldots , T\)), the investor faces the following optimization problem,

$$\begin{aligned} \min _{\mathbf {u}_t}~~J_t(Y_t;\mathbf {u}_t) =\Big ({\mathbb{E}}_t[Y_T^2] - ({\mathbb{E}}_t[Y_T])^2\Big ) - \hat{\gamma }_t(Y_t){\mathbb{E}}_t[Y_T] - \hat{\gamma }_t(Y_t)W, \end{aligned}$$
(16)

where the conditional expectations \({\mathbb{E}}_t[Y_T]={\mathbb{E}}[Y_T|Y_t]\) and \({\mathbb{E}}_t[Y_T^2]={\mathbb{E}}[Y_T^2|Y_t]\) are computed along the policy \(\{\mathbf {u}_t,\mathbf {u}_{t+1}^{TC},\ldots , \mathbf {u}_{T-1}^{TC}\}\).

We now prove by induction that the following two expressions,

$$\begin{aligned} {\mathbb{E}}_t[Y_T]&= \rho _tY_t+a_t^+Y_t1_{\{Y_t \ge 0\}}+a_t^-Y_t1_{\{Y_t < 0\}}, \end{aligned}$$
(17)
$$\begin{aligned} {\mathbb{E}}_t[Y_T^2]&= \rho _t^2Y_t^2+(2\rho _ta_t^+ + b_t^+)Y_t^21_{\{Y_t \ge 0\}}+(2\rho _ta_t^- + b_t^-)Y_t^21_{\{Y_t < 0\}}, \end{aligned}$$
(18)

hold along the time consistent policy, \(\{\mathbf {u}_t^{TC},\mathbf {u}_{t+1}^{TC},\ldots , \mathbf {u}_{T-1}^{TC}\}\), at time t.

At time T, we have

$$\begin{aligned} {\mathbb{E}}_T[Y_T]=Y_T, \quad {\mathbb{E}}_T[Y_T^2]=Y_T^2, \end{aligned}$$

with \(a_T^+=a_T^- = 0\) and \(b_T^+=b_T^- = 0\). Assume that expressions of the first moment and the second moment in (17) and (18), respectively, hold at time \(t+1\) along the time consistent policy \(\{\mathbf {u}_{t+1}^{TC},\ldots, \mathbf {u}_{T-1}^{TC}\}\). We will prove that these two expressions still hold at time t and the corresponding time consistent policy is given by (9).

As the dynamics of \(Y_t\) at period t is given by

$$\begin{aligned} Y_{t+1}=s_tY_t+\mathbf {P}_t'\mathbf {u}_t. \end{aligned}$$

It follows from the policy \(\{\mathbf {u}_t,\mathbf {u}_{t+1}^{TC},\ldots , \mathbf {u}_{T-1}^{TC}\}\) that we have

$$\begin{aligned}&{\mathbb{E}}_t[Y_T] = {\mathbb{E}}_t\big [{\mathbb{E}}_{t+1}[Y_T]\big ] \nonumber \\&\quad = {\mathbb{E}}_t \left[ \rho _{t+1}Y_{t+1}+a_{t+1}^+Y_{t+1}1_{\{Y_{t+1} \ge 0\}}+a_{t+1}^-Y_{t+1}1_{\{Y_{t+1}< 0\}}\right] \nonumber \\&\quad = {\mathbb{E}}_t[\rho _{t+1}(s_tY_t+\mathbf {P}_t'\mathbf {u}_t)]+{\mathbb{E}}_t\left[ a_{t+1}^+(s_tY_t+\mathbf {P}_t'\mathbf {u}_t)1_{\{s_tY_t+\mathbf {P}_t'\mathbf {u}_t \ge 0\}}\right] \nonumber \\&\qquad +\,{\mathbb{E}}_t \left[ a_{t+1}^-(s_tY_t+\mathbf {P}_t'\mathbf {u}_t)1_{\{s_tY_t+\mathbf {P}_t'\mathbf {u}_t < 0\}}\right] \end{aligned}$$
(19)

and

$$\begin{aligned}&{\mathbb{E}}_t[Y_T^2] = {\mathbb{E}}_t\big [{\mathbb{E}}_{t+1}[Y_T^2]\big ] \nonumber \\&\quad = {\mathbb{E}}_t\!\Big [\rho _{t+1}^2Y_{t+1}^2+(2\rho _{t+1}a_{t+1}^+ + b_{t+1}^+)Y_{t+1}^21_{\{Y_{t+1} \ge 0\}} \nonumber \\&\qquad +\,(2\rho _{t+1}a_{t+1}^- + b_{t+1}^-)Y_{t+1}^21_{\{Y_{t+1}< 0\}}\Big ] \nonumber \\&\quad = {\mathbb{E}}_t[\rho _{t+1}^2(s_tY_t+\mathbf {P}_t'\mathbf {u}_t)^2]\nonumber \\&\qquad +\,{\mathbb{E}}_t \left[ (2\rho _{t+1}a_{t+1}^+ + b_{t+1}^+)(s_tY_t+\mathbf {P}_t'\mathbf {u}_t)^21_{\{s_tY_t+\mathbf {P}_t'\mathbf {u}_t \ge 0\}}\right] \nonumber \\&\qquad +\,{\mathbb{E}}_t\left[ (2\rho _{t+1}a_{t+1}^- + b_{t+1}^-)(s_tY_t+\mathbf {P}_t'\mathbf {u}_t)^21_{\{s_tY_t+\mathbf {P}_t'\mathbf {u}_t < 0\}}\right] . \end{aligned}$$
(20)

For \(Y_t > 0\), we denote any admissible policy as \(\mathbf {u}_t=\mathbf {K}Y_t\) with \(\mathbf {K}\in {\mathbb {R}}^n\). Then, the cost functional can be expressed as

$$\begin{aligned}&J_t(Y_t;\mathbf {u}_t) = \Big ({\mathbb{E}}_t[Y_T^2] - ({\mathbb{E}}_t[Y_T])^2\Big ) - \gamma _t^+Y_t{\mathbb{E}}_t[Y_T] - \gamma _t^+Y_tW \\&\quad = {\mathbb{E}}_t[\rho _{t+1}^2(s_tY_t+\mathbf {P}_t'\mathbf {u}_t)^2]- \big ({\mathbb{E}}_t[\rho _{t+1}(s_tY_t+\mathbf {P}_t'\mathbf {u}_t)]\big )^2 \\&\qquad +\,{\mathbb{E}}_t \left[ (2\rho _{t+1}a_{t+1}^+ + b_{t+1}^+)(s_tY_t+\mathbf {P}_t'\mathbf {u}_t)^21_{\{s_tY_t+\mathbf {P}_t'\mathbf {u}_t \ge 0\}}\right] \\&\qquad +\,{\mathbb{E}}_t \left[ (2\rho _{t+1}a_{t+1}^- + b_{t+1}^-)(s_tY_t+\mathbf {P}_t'\mathbf {u}_t)^21_{\{s_tY_t+\mathbf {P}_t'\mathbf {u}_t< 0\}}\right] \\&\qquad -\,\left( {\mathbb{E}}_t \left[ a_{t+1}^+(s_tY_t+\mathbf {P}_t'\mathbf {u}_t)1_{\{s_tY_t+\mathbf {P}_t'\mathbf {u}_t\ge 0\}}\right] +{\mathbb{E}}_t \left[ a_{t+1}^-(s_tY_t+\mathbf {P}_t'\mathbf {u}_t)1_{\{s_tY_t+\mathbf {P}_t'\mathbf {u}_t< 0\}}\right] \right) ^2 \\&\qquad -\,2\rho _{t+1}\Big (\!{\mathbb{E}}_t \left[ a_{t+1}^+(s_tY_t+\mathbf {P}_t'\mathbf {u}_t)1_{\{s_tY_t+\mathbf {P}_t'\mathbf {u}_t \ge 0\}}\right] \\&\qquad +\,{\mathbb{E}}_t \left[ a_{t+1}^-(s_tY_t+\mathbf {P}_t'\mathbf {u}_t)1_{\{s_tY_t+\mathbf {P}_t'\mathbf {u}_t< 0\}}\right] \Big ){\mathbb{E}}_t[s_tY_t+\mathbf {P}_t'\mathbf {u}_t] \\&\qquad -\,\gamma _t^+Y_t\Big (\!{\mathbb{E}}_t\left[ a_{t+1}^+(s_tY_t+\mathbf {P}_t'\mathbf {u}_t)1_{\{s_tY_t+\mathbf {P}_t'\mathbf {u}_t \ge 0\}}\right] +{\mathbb{E}}_t \left[ a_{t+1}^-(s_tY_t+\mathbf {P}_t'\mathbf {u}_t)1_{\{s_tY_t+\mathbf {P}_t'\mathbf {u}_t< 0\}}\right] \Big ) \\&\qquad -\,\rho _{t+1}\gamma _t^+Y_t{\mathbb{E}}_t[s_tY_t+\mathbf {P}_t'\mathbf {u}_t]-\gamma _t^+Y_tW \\&\quad = Y_t^2 F_t^+(\mathbf {K})-\gamma _t^+Y_tW. \end{aligned}$$

Applying Proposition 3.1 yields the optimal time consistent policy at time t,

$$\begin{aligned} \mathbf {u}_t^{TC}={\mathop {\mathrm{argmin}}\limits _{\mathbf {u}_t\in {\mathbb {R}}^n}}\,\, J_t(Y_t;\mathbf {u}_t)=\mathbf {K}_t^+Y_t. \end{aligned}$$

Then, substituting the above optimal time consistent policy back into (19) and (20) gives rise to

$$\begin{aligned} {\mathbb{E}}_t[Y_T]&= \,\rho _tY_t+Y_t\Big (\rho _{t+1}{\mathbb{E}}[\mathbf {P}_t']\mathbf {K}_t^++{\mathbb{E}}\left[ a_{t+1}^+(s_t+\mathbf {P}_t'\mathbf {K}_t^+)1_{\{s_t+\mathbf {P}_t'\mathbf {K}_t^+ \ge 0\}}\right] \\&\quad +\,{\mathbb{E}}\left[ a_{t+1}^-(s_t+\mathbf {P}_t'\mathbf {K}_t^+)1_{\{s_t+\mathbf {P}_t'\mathbf {K}_t^+ < 0\}}\right] \Big ) \\&=\,\rho _tY_t+a_t^+Y_t \end{aligned}$$

and

$$\begin{aligned} {\mathbb{E}}_t[Y_T^2]&= \, \rho _t^2Y_t^2+2\rho _tY_t^2\Big (\rho _{t+1}{\mathbb{E}}[\mathbf {P}_t']\mathbf {K}_t^++{\mathbb{E}}\left[ a_{t+1}^+(s_t+\mathbf {P}_t'\mathbf {K}_t^+)1_{\{s_t+\mathbf {P}_t'\mathbf {K}_t^+ \ge 0\}}\right] \\&\quad +\,{\mathbb{E}}\left[ a_{t+1}^-(s_t+\mathbf {P}_t'\mathbf {K}_t^+)1_{\{s_t+\mathbf {P}_t'\mathbf {K}_t^+< 0\}}\right] \Big ) \\&\quad +\,\Big (\rho _{t+1}^2 (\mathbf {K}_t^+)' {\mathbb{E}}[\mathbf {P}_t\mathbf {P}_t']\mathbf {K}_t^++2\rho _{t+1}{\mathbb{E}}\left[ a_{t+1}^+(s_t+\mathbf {P}_t'\mathbf {K}_t^+)\mathbf {P}_t'\mathbf {K}_t^+1_{\{s_t+\mathbf {P}_t'\mathbf {K}_t^+\ge 0\}}\right] \\&\quad +\,2\rho _{t+1}{\mathbb{E}}\left[ a_{t+1}^-(s_t+\mathbf {P}_t'\mathbf {K}_t^+)\mathbf {P}_t'\mathbf {K}_t^+1_{\{s_t+\mathbf {P}_t'\mathbf {K}_t^+< 0\}}\right] \\&\quad +\,{\mathbb{E}}\left[ b_{t+1}^+(s_t+\mathbf {P}_t'\mathbf {K}_t^+)^21_{\{s_t+\mathbf {P}_t'\mathbf {K}_t^+\ge 0\}}\right] +{\mathbb{E}}\left[ b_{t+1}^-(s_t+\mathbf {P}_t'\mathbf {K}_t^+)^21_{\{s_t+\mathbf {P}_t'\mathbf {K}_t^+< 0\}}\right] \Big )Y_t^2 \\&=\rho _t^2Y_t^2+(2\rho _ta_t^++b_t^+)Y_t^2. \end{aligned}$$

Furthermore,

$$\begin{aligned} \text{Var}_t(Y_T)={\mathbb{E}}_t[Y_T^2]-({\mathbb{E}}_t[Y_T])^2 =(b_t^+ - ( a_t^+)^2)Y_t^2 \ge 0, \end{aligned}$$

which implies \(b_t^+ - ( a_t^+)^2\ge 0\).

For \(Y_t < 0\), we denote any admissible policy as \(\mathbf {u}_t=\mathbf {K}Y_t\) with \(\mathbf {K}\in {\mathbb {R}}^n\). Then, the cost functional can be expressed as

$$\begin{aligned} J_t(Y_t;\mathbf {u}_t)&= Y_t^2 \Big \{\rho _{t+1}^2 \mathbf {K}' ({\mathbb{E}}[\mathbf {P}_t\mathbf {P}_t']-{\mathbb{E}}[\mathbf {P}_t']{\mathbb{E}}[\mathbf {P}_t])\mathbf {K}\\&\quad +\,{\mathbb{E}}\left[ (2\rho _{t+1}a_{t+1}^+ + b_{t+1}^+)(s_t+\mathbf {P}_t'\mathbf {K})^21_{\{s_t+\mathbf {P}_t'\mathbf {K}\le 0\}}\right] \\&\quad +\,{\mathbb{E}}\left[ (2\rho _{t+1}a_{t+1}^- + b_{t+1}^-)(s_t+\mathbf {P}_t'\mathbf {K})^21_{\{s_t+\mathbf {P}_t'\mathbf {K}> 0\}}\right] \\&\quad -\,\left( {\mathbb{E}}\left[ a_{t+1}^+(s_t+\mathbf {P}_t'\mathbf {K})1_{\{s_t+\mathbf {P}_t'\mathbf {K}\le 0\}}\right] +{\mathbb{E}}\left[ a_{t+1}^-(s_t+\mathbf {P}_t'\mathbf {K})1_{\{s_t+\mathbf {P}_t'\mathbf {K}> 0\}}\right] \right) ^2 \\&\quad -\,2\rho _{t+1} {\mathbb{E}}\left[ a_{t+1}^+(s_t+\mathbf {P}_t'\mathbf {K})1_{\{s_t+\mathbf {P}_t'\mathbf {K}\le 0\}}\right] (s_t+{\mathbb{E}}[\mathbf {P}_t']\mathbf {K}) \\&\quad -\,2\rho _{t+1}{\mathbb{E}}\left[ a_{t+1}^-(s_t+\mathbf {P}_t'\mathbf {K})1_{\{s_t+\mathbf {P}_t'\mathbf {K}> 0\}}\right] (s_t+{\mathbb{E}}[\mathbf {P}_t']\mathbf {K}) \\&\quad +\,\gamma _t^-\left( {\mathbb{E}}\left[ a_{t+1}^+(s_t+\mathbf {P}_t'\mathbf {K})1_{\{s_t+\mathbf {P}_t'\mathbf {K}\le 0\}}\right] +{\mathbb{E}}\left[ a_{t+1}^-(s_t+\mathbf {P}_t'\mathbf {K})1_{\{s_t+\mathbf {P}_t'\mathbf {K}> 0\}}\right] \right) \\&\quad +\,\rho _{t+1}\gamma _t^-(s_t+{\mathbb{E}}[\mathbf {P}_t']\mathbf {K})\Big \}+\gamma _t^-Y_tW \\&= Y_t^2 F_t^-(\mathbf {K})+\gamma _t^-Y_tW. \end{aligned}$$

Applying Proposition 3.1 yields the optimal time consistent policy at time t,

$$\begin{aligned} \mathbf {u}_t^{TC}={\mathop {\mathrm{argmin}}\limits _{\mathbf {u}_t\in {\mathbb {R}}^n}}\,J_t(Y_t;\mathbf {u}_t)=\mathbf {K}_t^-Y_t. \end{aligned}$$

Then, substituting the above optimal time consistent policy back into (19) and (20) gives rise to

$$\begin{aligned} {\mathbb{E}}_t[Y_T]&=\rho _tY_t+Y_t\Big (\rho _{t+1}{\mathbb{E}}[\mathbf {P}_t']\mathbf {K}_t^-+{\mathbb{E}}\left[ a_{t+1}^+(s_t+\mathbf {P}_t'\mathbf {K}_t^-)1_{\{s_t+\mathbf {P}_t'\mathbf {K}_t^-\le 0\}}\right] \\&\quad +\,{\mathbb{E}}\left[ a_{t+1}^-(s_t+\mathbf {P}_t'\mathbf {K}_t^-)1_{\{s_t+\mathbf {P}_t'\mathbf {K}_t^-> 0\}}\right] \Big ) \\&=\rho _tY_t+a_t^-Y_t \end{aligned}$$

and

$$\begin{aligned} {\mathbb{E}}_t[Y_T^2]&= \rho _t^2Y_t^2+2\rho _tY_t^2\Big (\rho _{t+1}{\mathbb{E}}[\mathbf {P}_t']\mathbf {K}_t^-+{\mathbb{E}}\left[ a_{t+1}^+(s_t+\mathbf {P}_t'\mathbf {K}_t^-)1_{\{s_t+\mathbf {P}_t'\mathbf {K}_t^-\le 0\}}\right] \\&\quad +\,{\mathbb{E}}\left[ a_{t+1}^-(s_t+\mathbf {P}_t'\mathbf {K}_t^-)1_{\{s_t+\mathbf {P}_t'\mathbf {K}_t^-> 0\}}\right] \Big ) \\&\quad +\,\Big (\rho _{t+1}^2 (\mathbf {K}_t^-)' {\mathbb{E}}[\mathbf {P}_t\mathbf {P}_t']\mathbf {K}_t^-+2\rho _{t+1}{\mathbb{E}}\left[ a_{t+1}^+(s_t+\mathbf {P}_t'\mathbf {K}_t^-)\mathbf {P}_t'\mathbf {K}_t^-1_{\{s_t+\mathbf {P}_t'\mathbf {K}_t^-\le 0\}}\right] \\&\quad +\,2\rho _{t+1}{\mathbb{E}}\left[ a_{t+1}^-(s_t+\mathbf {P}_t'\mathbf {K}_t^-)\mathbf {P}_t'\mathbf {K}_t^-1_{\{s_t+\mathbf {P}_t'\mathbf {K}_t^-> 0\}}\right] \\&\quad +\,{\mathbb{E}}\left[ b_{t+1}^+(s_t+\mathbf {P}_t'\mathbf {K}_t^-)^21_{\{s_t+\mathbf {P}_t'\mathbf {K}_t^-\le 0\}}\right] +{\mathbb{E}}\left[ b_{t+1}^-(s_t+\mathbf {P}_t'\mathbf {K}_t^-)^21_{\{s_t+\mathbf {P}_t'\mathbf {K}_t^-> 0\}}\right] \Big )Y_t^2 \\&= \rho _t^2Y_t^2+(2\rho _ta_t^-+b_t^-)Y_t^2. \end{aligned}$$

Furthermore,

$$\begin{aligned} \text{Var}_t(Y_T)={\mathbb{E}}_t[Y_T^2]-({\mathbb{E}}_t[Y_T])^2 =(b_t^- - ( a_t^-)^2)Y_t^2 \ge 0, \end{aligned}$$

which implies \(b_t^- - ( a_t^-)^2\ge 0\).

For \(Y_t=0\), the cost functional reduces to the conditional variance of the terminal wealth along policy \(\{\mathbf {u}_t,\mathbf {u}_{t+1}^{TC},\ldots , \mathbf {u}_{T-1}^{TC}\}\), which can be expressed as

$$\begin{aligned} J_t(Y_t;\mathbf {u}_t)&= \rho _{t+1}^2 \mathbf {u}_t' ({\mathbb{E}}[\mathbf {P}_t\mathbf {P}_t']-{\mathbb{E}}[\mathbf {P}_t']{\mathbb{E}}[\mathbf {P}_t])\mathbf {u}_t\\&\quad +\,{\mathbb{E}}\left[ b_{t+1}^+(\mathbf {P}_t'\mathbf {u}_t)^21_{\{\mathbf {P}_t'\mathbf {u}_t\ge 0\}}\right] +{\mathbb{E}}\left[ b_{t+1}^-(\mathbf {P}_t'\mathbf {u}_t)^21_{\{\mathbf {P}_t'\mathbf {u}_t< 0\}}\right] \\&\quad -\,\Big ({\mathbb{E}}\left[ a_{t+1}^+\mathbf {P}_t'\mathbf {u}_t1_{\{\mathbf {P}_t'\mathbf {u}_t\ge 0\}}\right] +{\mathbb{E}}\left[ a_{t+1}^-\mathbf {P}_t'\mathbf {u}_t1_{\{\mathbf {P}_t'\mathbf {u}_t< 0\}}\right] \Big )^2\\&\quad +\,2\rho _{t+1} \left( {\mathbb{E}}\left[ a_{t+1}^+(\mathbf {P}_t'\mathbf {u}_t)^21_{\{\mathbf {P}_t'\mathbf {u}_t\ge 0\}}\right] + {\mathbb{E}}\left[ a_{t+1}^-(\mathbf {P}_t'\mathbf {u}_t)^21_{\{\mathbf {P}_t'\mathbf {u}_t< 0\}}\right] \right) \\&\quad -\,2\rho _{t+1}\Big ({\mathbb{E}}\left[ a_{t+1}^+\mathbf {P}_t'\mathbf {u}_t1_{\{\mathbf {P}_t'\mathbf {u}_t\ge 0\}}\right] +{\mathbb{E}}\left[ a_{t+1}^-\mathbf {P}_t'\mathbf {u}_t1_{\{\mathbf {P}_t'\mathbf {u}_t< 0\}}\right] \Big ) {\mathbb{E}}[\mathbf {P}_t']\mathbf {u}_t\\&\ge 0. \end{aligned}$$

It is not difficult to conclude that \(\mathbf {u}_t^{TC}={\mathop {\mathrm{argmin}}\limits _{\mathbf {u}_t\in {\mathbb {R}}^n}} J_t(Y_t;\mathbf {u}_t)=\mathbf {0}\).

Therefore, along the time consistent policy \(\{\mathbf {u}_t^{TC},\mathbf {u}_{t+1}^{TC},\ldots , \mathbf {u}_{T-1}^{TC}\}\), expressions (17) and (18) hold at time t, which completes our proof. \(\square \)

Appendix 3: The Proof of Theorem 4.1

Proof

Following the technique in the proof of Theorem 3.1, we can derive the main results directly with the following specifics.

  1. (1)

    For \(X_t>\rho _t^{-1}W\), we denote any admissible policy as \(\mathbf {u}_t=\mathbf {K}(X_t-\rho _t^{-1}W)\) with \(\mathbf {K}\in {\mathcal {A}}_t\).

  2. (2)

    For \(X_t<\rho _t^{-1}W\), we denote any admissible policy as \(\mathbf {u}_t=\mathbf {K}(X_t-\rho _t^{-1}W)\) with \(\mathbf {K}\in -{\mathcal {A}}_t\), where \(-{\mathcal {A}}_t\) is the negative cone of \({\mathcal {A}}_t\).

  3. (3)

    For \(X_t=\rho _t^{-1}W\), we can similarly prove \(\mathbf {u}_t^{TC}=\mathbf {0}\).

Therefore, we have

$$\begin{aligned} \widetilde{\mathbf{K}}_{t}^+={\mathop {\text{argmin}}_{\mathbf{K}\in\mathcal{A}_{t}}}\quad {F_{t}^+} {(\mathbf{K})},\quad \widetilde{\mathbf{K}}_{t}^-={\mathop {\text{argmin}}_{\mathbf{K}\in\mathcal{A}_{t}}}\quad {F_{t}^-} {(\mathbf{K})},\end{aligned}$$

This completes the proof. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, X., Li, X., Li, D. et al. Time consistent behavioral portfolio policy for dynamic mean–variance formulation. J Oper Res Soc 68, 1647–1660 (2017). https://doi.org/10.1057/s41274-017-0179-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1057/s41274-017-0179-6

Keywords

Navigation