Abstract
Relatively little is known about the extent to which culture moderates findings in applied psychology research. To address this gap, we leverage the metaBUS database of over 1,000,000 published findings to examine the extent to which six popular cross-cultural models explain variance in findings across 136 bivariate relationships and 56 individual cultural dimensions. We compare moderating effects attributable to Hofstede’s dimensions, GLOBE’s practices, GLOBE’s values, Schwartz’s Value Survey, Ronen and Shenkar’s cultural clusters, and the United Nations’ M49 standard. Results from 25,296 multilevel meta-analyses indicate that, after accounting for statistical artifacts, cross-cultural models explain approximately 5–7% of the variance in findings. The variance explained did not vary substantially across models. A similar set of analyses on observed effect sizes reveal differences of |r| = .05–.07 attributable to culture. Variance among the 136 bivariate relationships was explained primarily by sampling error, indicating that cross-cultural moderation assessments require atypically large sample sizes. Our results provide important information for understanding the overall level of explanatory power attributable to cross-cultural models, their relative performance, and their sensitivity to variance in the topic of study. In addition, our findings may be used to inform power analyses for future research. We discuss implications for research and practice.
Résumé
Relativement limitée est notre connaissance de l’ampleur des effets modérateurs de la culture sur les résultats de la recherche en psychologie appliquée. Pour y remédier, nous nous appuyons sur plus de 1 000 000 résultats publiés dans la base de données metaBUS, afin d’examiner dans quelle mesure les six modèles interculturels populaires expliquent la variance des résultats dans 136 relations bivariées et 56 dimensions culturelles individuelles. Nous comparons les effets modérateurs attribuables aux dimensions de Hofstede, aux pratiques de GLOBE, aux valeurs de GLOBE, à l’enquête sur la valeur de Schwartz, aux clusters culturels de Ronen & Shenkar et à la norme M49 des Nations Unies. Les résultats de 25 296 méta-analyses multiniveaux indiquent qu'après avoir pris en compte des artefacts statistiques, les modèles interculturels expliquent environ 5 à 7% de la variance des résultats. La variance expliquée ne variait pas substantiellement d'un modèle à l'autre. Une série d'analyses similaires sur les ampleurs des effets observées révèle des différences de | r | = 0,05–0,07 imputables à la culture. La variance entre les 136 relations bivariées a été principalement expliquée par une erreur d'échantillonnage, ce qui indique que les évaluations des effets modérateurs interculturels nécessitent des tailles d'échantillon exceptionnellement grandes. Nos résultats apportent des renseignements importants pour comprendre le niveau global de pouvoir explicatif attribuable aux modèles interculturels, leur performance relative et leur sensibilité à la diversité des objets de recherche. De plus, nos résultats peuvent renseigner de futures recherches sur des analyses de pouvoir. Sont également discutées des implications pour la recherche et la pratique.
Resumen
Relativamente poco se conoce sobre hasta qué punto la cultura modera los hallazgos de la investigación en psicología aplicada. Para abordar esta brecha, nos apalancamos en la base de datos meta BUS de más de 1’000.000 de resultados publicados para examinar hasta que punto seis modelos transculturales populares explican la varianza de los resultados en 136 relaciones bivariadas y 56 dimensiones culturales individuales. Comparamos los efectos moderados atribuibles a las dimensiones de Hofstede, las prácticas de GLOBE, los valores de GLOBE, la encuesta de valores de Schwartz, los clústeres culturales de Shenkar, y el estándar M49 de las Naciones Unidos. Los resultados de 25.296 meta-análisis multinivel indican que, después de contabilizar los artefactos estadísticos, los modelos transculturales explican solamente entre el 5 y 7% de la varianza en los hallazgos. La varianza explicada no varió sustancialmente entre los modelos. Un conjunto similar de análisis sobre los tamaños de los efectos observados revela diferencias de |r| = .05–.07 atribuible a la cultura. La varianza entre las entre las 136 relaciones bivariadas fue explicada se explica principalmente por un error de muestreo, con esto indicando que las evaluaciones de la moderación transcultural requieren tamaños de muestra atípicamente grandes. Nuestros resultados proporcionan información importante para entender el nivel general de poder explicativo atribuible a los modelos transculturales, su desempeño relativo, y su sensibilidad a la varianza en el tema de estudio. Adicionalmente, nuestros hallazgos pueden ser usados para informar sobre los análisis de potencia para futuras investigaciones. Discutimos las implicaciones para la investigación y la práctica.
Resumo
Relativamente pouco se sabe sobre até que ponto a cultura modera descobertas na pesquisa em psicologia aplicada. Para abordar essa lacuna, aproveitamos o banco de dados metaBUS de mais de 1.000.000 descobertas publicadas para examinar até que ponto seis modelos interculturais populares explicam a variância nas descobertas em 136 relações bivariadas e 56 dimensões culturais individuais. Comparamos efeitos moderadores atribuíveis a dimensões de Hofstede, a práticas GLOBE, a valores do GLOBE, a Pesquisa de Valor de Schwartz, a clusters culturais de Ronen & Shenkar e ao padrão M49 das Nações Unidas. Resultados de 25.296 meta-análises multiníveis indicam que, após contabilizar artefatos estatísticos, modelos transculturais explicam aproximadamente 5-7% da variância nos resultados. A variância explicada não variou substancialmente entre os modelos. Um conjunto semelhante de análises sobre os tamanhos do efeito observado revela diferenças de | r | = 0,05-0,07 atribuível a cultura. A variância entre as 136 relações bivariadas foi explicada principalmente por erro de amostragem, indicando que avaliações de moderação intercultural requerem tamanhos de amostra atipicamente grandes. Nossos resultados fornecem informações importantes para a compreensão do nível geral de poder explicativo atribuível a modelos transculturais, seu desempenho relativo e sua sensibilidade à variância no tópico de estudo. Além disso, nossos resultados podem ser usados para informar análises de poder para pesquisas futuras. Discutimos implicações para pesquisa e prática.
摘要
在应用心理学研究中, 文化调节研究发现的程度知之甚少。为了解决这一差距, 我们用metaBUS数据库中超过1,000,000篇已发表的研究发现, 来检验六个流行的跨文化模型在136种双变量关系和56种个体文化维度上解释研究发现方差的程度。我们比较了霍夫斯泰德的维度、GLOBE的实践、GLOBE的价值观、施瓦茨的价值观调查、Ronen和Shenkar的文化集群, 以及联合国M49标准的缓和效应。来自25,296项多级荟萃分析的结果表明, 在考虑了统计假象后, 跨文化模型解释了研究发现方差的大约5-7%。所解释的方差在模型之间没有很大的不同。一组对所观察的效应大小的类似分析揭示了| r | = .05-.07的差异归因于文化。136个二元关系之间的方差主要来自抽样误差, 这表明跨文化缓和评估需要非典型的大样本量。我们的结果为理解跨文化模型的整体解释能力、它们的相对表现和它们对研究课题方差的敏感度提供了重要信息。此外, 我们的发现可用于对未来研究提供能力分析信息。我们讨论了对研究和实践的启示。
This is a preview of subscription content, access via your institution.




References
Aguinis, H., Beaty, J. C., Boik, R. J., & Pierce, C. A. 2005. Effect size and power in assessing moderating effects of categorical variables using multiple regression: A 30-year review. Journal of Applied Psychology, 90(1): 94–107.
Aguinis, H., Cascio, W. F., & Ramani, R. S. 2017. Science’s reproducibility and replicability crisis: International business is not immune. Journal of International Business Studies, 48(6): 653–663.
Aguinis, H., Ramani, R. S., & Cascio, W. F. 2020. Methodological practices in international business research: An after-action review of challenges and solutions. Journal of International Business Studies, 51(9): 1593–1608.
Allen, T. D., French, K. A., Dumani, S., & Shockley, K. M. 2015. Meta-analysis of work–family conflict mean differences: Does national context matter? Journal of Vocational Behavior, 90: 90–100.
Beugelsdijk, S., Kostova, T., & Roth, K. 2017. An overview of Hofstede-inspired country-level culture research in international business since 2006. Journal of International Business Studies, 48(1): 30–47.
Bosco, F. A., Aguinis, H., Singh, K., Field, J. G., & Pierce, C. A. 2015. Correlational effect size benchmarks. Journal of Applied Psychology, 100(2): 431–449.
Bosco, F. A., Uggerslev, K. L., & Steel, P. 2017. MetaBUS as a vehicle for facilitating meta-analysis. Human Resource Management Review, 27(1): 237–254.
Buckley, P. J., Doh, J. P., & Benischke, M. H. 2017. Towards a renaissance in international business research? Big questions, grand challenges, and the future of IB scholarship. Journal of International Business Studies, 48(9): 1045–1064.
Busse, C., Kach, A. P., & Wagner, S. M. 2017. Boundary conditions: What they are, how to explore them, why we need them, and when to consider them. Organizational Research Methods, 20(4): 574–609.
Cascio, W. F., & Aguinis, H. 2008. Staffing Twenty-first-century Organizations. Academy of Management Annals, 2(1): 133–165.
Cheung, G. W., & Rensvold, R. B. 2000. Assessing extreme and acquiescence response sets in cross-cultural research using structural equations modeling. Journal of Cross-Cultural Psychology, 31(2): 187–212.
Choi, D., Oh, I.-S., & Colbert, A. E. 2015. Understanding organizational commitment: A meta-analytic examination of the roles of the five-factor model of personality and culture. Journal of Applied Psychology, 100(5): 1542–1567.
Cohen, J. 1988. Statistical power analysis for the behavioral sciences. Erlbaum.
Cohen, J. 1992. A power primer. Psychological Bulletin, 112(1): 155–159.
Cortina, J. M., Koehler, T., Keeler, K. R., & Nielsen, B. B. 2019. Restricted variance interaction effects: What they are and why they are your friends. Journal of Management, 45(7): 2779–2806.
Crede, M., Jong, J., & Harms, P. 2019. The generalizability of transformational leadership across cultures: a meta-analysis. Journal of Managerial Psychology, 34(3): 139–155.
Ellen III, B. P., Alexander, K. C., Mackey, J. D., McAllister, C. P., & Carson, J. E. in press. Portrait of a workplace deviant: A clearer picture of the Big Five and Dark Triad as predictors of workplace deviance. Journal of Applied Psychology.
Faul, F., Erdfelder, E., Buchner, A., & Lang, A.-G. 2009. Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behavior Research Methods, 41(4): 1149–1160.
Fernández-Castilla, B., Jamshidi, L., Declercq, L., Beretvas, S. N., Onghena, P., & Van den Noortgate, W. 2020. The application of meta-analytic (multi-level) models with multiple random effects: A systematic review. Behavior Research Methods, 52(5): 2031–2052.
Fisher, D. M. 2014. A multilevel cross-cultural examination of role overload and organizational commitment: Investigating the interactive effects of context. Journal of Applied Psychology, 99(4): 723–736.
Franke, G. R., & Richey, R. G. 2010. Improving generalizations from multi-country comparisons in international business research. Journal of International Business Studies, 41(8): 1275–1293.
Gelfand, M. J., Aycan, Z., Erez, M., & Leung, K. 2017. Cross-cultural industrial organizational psychology and organizational behavior: A hundred-year journey. Journal of Applied Psychology, 102(3): 514–529.
Gelfand, M. J., Nishii, L. H., & Raver, J. L. 2006. On the nature and importance of cultural tightness-looseness. Journal of Applied Psychology, 91(6): 1225–1244.
Gelfand, M. J., Raver, J. L., & Holcombe Ehrhart, K. 2002. Methodological issues in cross-cultural organizational research. In S. Rogelberg (Ed.), Handbook of industrial and organizational psychology research methods. Oxford: Blackwell.
Georgas, J., & Berry, J. W. 1995. An ecocultural taxonomy for cross-cultural psychology. Cross-Cultural Research, 29(2): 121–157.
Hedges, L. V., Tipton, E., & Johnson, M. C. 2010. Robust variance estimation in meta-regression with dependent effect size estimates. Research Synthesis Methods, 1(1): 39–65.
Hempel, S., Miles, J. N. V., Booth, M. J., Wang, Z., Morton, S. C., & Shekelle, P. G. 2013. Risk of bias: A simulation study of power to detect study-level moderator effects in meta-analysis. Systematic reviews, 2: 107–207.
Hofstede, G. 1980. Culture’s consequences: International differences in work-related values. Sage.
Hofstede, G. 2006. What did GLOBE really measure? Researchers’ minds versus respondents’ minds. Journal of International Business Studies, 37(6): 882–896.
Hofstede, G., Hofstede, G. J., & Minkov, M. 2010. Cultures and organizations: Software of the mind (3rd ed.). McGraw-Hill.
House, R. J., Hanges, P. J., Javidan, M., Dorfman, P. W., & Gupta, V. 2004. Culture, leadership, and organizations. Thousand Oaks: Sage.
Kashima, Y., Bain, P. G., & Perfors, A. 2019. The psychology of cultural dynamics: What is it, what do we know, and what is yet to be known? Annual Review of Psychology, 70(1): 499–529.
Kirkman, B. L., Lowe, K. B., & Gibson, C. B. 2006. A quarter century of culture’s consequences: A review of empirical research incorporating Hofstede’s cultural values framework. Journal of International Business Studies, 37(3): 285–320.
Kirkman, B. L., Lowe, K. B., & Gibson, C. B. 2017. A retrospective on culture’s consequences: The 35-year journey. Journal of International Business Studies, 48(1): 12–29.
Knafo, A., Roccas, S., & Sagiv, L. 2011. The value of values in cross-cultural research: A special issue in honor of Shalom Schwartz. Journal of Cross-Cultural Psychology, 42(2): 178–185.
Lehtonen, M., Soveri, A., Laine, A., Järvenpää, J., de Bruin, A., & Antfolk, J. 2018. Is bilingualism associated with enhanced executive functioning in adults? A meta-analytic review. Psychological Bulletin, 144(4): 394–425.
Maseland, R., & van Hoorn, A. 2009. Explaining the negative correlation between values and practices: A note on the Hofstede–GLOBE debate. Journal of International Business Studies, 40(3): 527–532.
Matsumoto, D. 2006. Culture and cultural worldviews: Do verbal descriptions about culture reflect anything other than verbal descriptions of culture? Culture and Psychology, 12(1): 33–62.
Maxwell, S. E. 2004. The persistence of underpowered studies in psychological research: Causes, consequences, and remedies. Psychological Methods, 9(2): 147–163.
Minkov, M. 2018. A revision of Hofstede’s model of national culture: old evidence and new data from 56 countries. Cross Cultural and Strategic Management, 25(2): 231–256.
Platt, J. R. 1964. Strong Inference. Science, 146(3642): 347–353.
Ramesh, A., & Gelfand, M. J. 2010. Will they stay or will they go? The role of job embeddedness in predicting turnover in individualistic and collectivistic cultures. Journal of Applied Psychology, 95(5): 807.
Rockstuhl, T., Eisenberger, R., Shore, L. M., Kurtessis, J. N., Ford, M. T., Buffardi, L. C., & Mesdaghinia, S. 2020. Perceived organizational support (POS) across 54 nations: A cross-cultural meta-analysis of POS effects. Journal of International Business Studies, 51(6): 933–962.
Ronen, S., & Shenkar, O. 2013. Mapping world cultures: Cluster formation, sources and implications. Journal of International Business Studies, 44(9): 867–897.
Schmidt, F. L., & Hunter, J. E. 2015. Methods of meta-analysis: Correcting error and bias in research findings (3rd edn.). Thousand Oaks: Sage.
Schwartz, S. H. 1992. Universals in the content and structure of values: Theoretical advances and empirical tests in 20 countries. Advances in Experimental Social Psychology, 25(1): 1–65.
Schwartz, S. H. 2006. A theory of cultural value orientations: Explication and applications. Comparative Sociology, 5(2–3): 137–182.
Schwartz, S. H. 2008. The 7 Schwartz cultural value orientation scores for 80 countries.
Segall, M. H., Lonner, W. J., & Berry, J. W. 1998. Cross-cultural psychology as a scholarly discipline: On the flowering of culture in behavioral research. American Psychologist, 53(10): 1101–1110.
Shao, R., Rupp, D. E., Skarlicki, D. P., & Jones, K. S. 2013. Employee justice across cultures: A meta-analytic review. Journal of Management, 39(1): 263–301.
United Nations Statistics Division. 1999. Standard Country or Area Codes for Statistics Use, 1999 (Revision 4).
Taras, V., Kirkman, B. L., & Steel, P. 2010a. Examining the impact of Culture’s consequences: A three-decade, multilevel, meta-analytic review of Hofstede’s cultural value dimensions. Journal of Applied Psychology, 95(3): 405.
Taras, V., Steel, P., & Kirkman, B. L. 2010b. Negative practice–value correlations in the GLOBE data: Unexpected findings, questionnaire limitations and research directions. Journal of International Business Studies, 41(8): 1330–1338.
Taras, V., Steel, P., & Kirkman, B. L. 2016. Does country equate with culture? Beyond geography in the search for cultural boundaries. Management International Review, 56(4): 455–487.
Teagarden, M. B., Von Glinow, M. A., & Mellahi, K. 2018. Contextualizing international business research: Enhancing rigor and relevance. Journal of World Business, 53(3): 303–306.
Thalmayer, A. G., Toscanelli, C., & Arnett, J. J. 2021. The neglected 95% revisited: Is American psychology becoming less American? American Psychologist, 76(1): 116–129.
Thorlund, K., Imberger, G., Walsh, M., Chu, R., Gluud, C., Wetterslev, J., Guyatt, G., Devereaux, P. J., & Thabane, L. 2011. The number of patients and events required to limit the risk of overestimation of intervention effects in meta-analysis – A simulation study. PLoS ONE, 6(10): e25491.
Trompenaars, F., & Woolliams, P. 2004. Business across cultures. New York: Wiley.
Tsui, A. S., Nifadkar, S. S., & Ou, A. Y. 2007. Cross-national, cross-cultural organizational behavior research: Advances, gaps, and recommendations. Journal of Management, 33(3): 426–478.
Tung, R. L., & Verbeke, A. 2010. Beyond Hofstede and GLOBE: Improving the quality of cross-cultural research. Journal of International Business Studies, 41(8): 1259–1274.
Viechtbauer, W. 2010. Conducting Meta-Analyses in R with the metafor Package. Journal of Statistical Software, 1(3): 2010.
Zhong, L., Wayne, S. J., & Liden, R. C. 2016. Job engagement, perceived organizational support, high-performance human resource practices, and cultural value orientations: A cross-level investigation. Journal of Organizational Behavior, 37(6): 823–844.
Acknowledgements
We thank Dr. Bo Nielsen and two anonymous reviewers for highly constructive feedback that allowed us to substantially improve our manuscript. We also thank Dr. Piers Steel for reviewing an earlier version of this manuscript and Dr. Brad Price for his support. This research was supported by the Super Computing System (Thorny Flat) at West Virginia University, which is funded in part by the National Science Foundation (NSF) Major Research Instrumentation Program (MRI) Award #1726534. An earlier version of this manuscript was presented at the 34th Annual Meeting of the Society for Industrial and Organizational Psychology.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Accepted by Bo Nielsen, Consulting Editor, 11 March 2021. This article has been with the authors for two revisions.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Field, J.G., Bosco, F.A., Kraichy, D. et al. More alike than different? A comparison of variance explained by cross-cultural models. J Int Bus Stud 52, 1797–1817 (2021). https://doi.org/10.1057/s41267-021-00428-z
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1057/s41267-021-00428-z
Keywords
- meta-analysis
- big data
- open science
- cross-cultural research/measurement issues