Tail Event Driven ASset allocation: evidence from equity and mutual funds’ markets

  • Wolfgang Karl Härdle
  • David Kuo Chuen Lee
  • Sergey Nasekin
  • Alla Petukhina
Original Article
  • 20 Downloads

Abstract

The correlation structure across assets and opposite tail movements are essential to the asset allocation problem, since they determine the level of risk in a position. Correlation alone is not informative on the distributional details of the assets. Recently introduced TEDAS—Tail Event Driven ASset allocation approach determines the dependence between assets at different tail measures. TEDAS uses adaptive Lasso-based quantile regression in order to determine an active set of negative coefficients. Based on these active risk factors, an adjustment for intertemporal correlation is made. In this research, authors aim to develop TEDAS, by introducing three TEDAS modifications differing in allocation weights’ determination: a Cornish–Fisher Value-at-Risk minimization, Markowitz diversification rule or naïve equal weighting. TEDAS strategies significantly outperform other widely used allocation approaches on two asset markets: German equity and Global mutual funds.

Keywords

Adaptive lasso Portfolio optimization Quantile regression Value-at-Risk Tail events 

JEL Classification

C00 C14 C50 C58 

References

  1. Alexander, C. 2001. A Primer on the Orthogonal GARCH Model. Reading: ISMA Centre, University of Reading. Unpublished manuscript.Google Scholar
  2. Bai, Z., H. Liu, and W.K. Wong. 2009. Enhancement of the Applicability of Markowitz’s Portfolio Optimization by Utilizing Random Matrix Theory. Mathematical Finance 19(4): 639–667.CrossRefGoogle Scholar
  3. Banz, R.W. 1981. The Relationship Between Return and Market Value of Common Stocks. Journal of Financial Economics 9(1): 3–18.CrossRefGoogle Scholar
  4. Bassett, G., and R. Koenker. 1978. Regression Quantiles. Econometrica 46: 33–50.CrossRefGoogle Scholar
  5. Belloni, A., and V. Chernozhukov. 2011. \(L_1\)-Penalized Quantile Regression in High-Dimensional Sparse Models. Annals of Statistics 39(1): 82–130.CrossRefGoogle Scholar
  6. Bender, J., Briand, R., Fachinotti, G., and S. Ramachandran. 2005. Small Caps? No Small Oversight: Institutional Investors and Global Small Cap Equities. MSCI Research Insight, March 2012. http://www.msci.com/www/research-paper/small-caps-no-small-oversight/014391548. Accessed Feb 2015.
  7. Borke, L., and W.K. Härdle. 2016. Q3-D3-LSA, Berlin: Humboldt Universität zu Berlin. SFB 649 Discussion Paper 2016-049.Google Scholar
  8. Brandimarte, P. 2006. Numerical Methods in Finance and Economics: A MATLAB-Based Introduction, 2nd ed. New York: Wiley.CrossRefGoogle Scholar
  9. Cornish, E.A., and R.A. Fisher. 1960. The Percentile Points of Distributions Having Known Cumulants. Technometrics 2(2): 209–225.CrossRefGoogle Scholar
  10. Crain, M. 2011. A Literature Review of the Size Effect. Working Paper, 29 October 2011. http://www.ssrn.com/abstract_id=1710076. Accessed Feb 2015.
  11. DeMiguel, V., L. Garlappi, F.J. Nogales, and R. Uppal. 2009a. A Generalized Approach to Portfolio Optimization: Improving Performance by Constraining Portfolio Norms. Management Science 55(5): 798–812.CrossRefGoogle Scholar
  12. DeMiguel, V., L. Garlappi, F.J. Nogales, and R. Uppal. 2009b. Optimal Versus Naive Diversification: How Inefficient is the 1/N Portfolio Strategy? Revew of Financial Studies 22: 1915–1953.CrossRefGoogle Scholar
  13. Driessen, J., and L. Laeven. 2007. International Portfolio Diversification Benefits: Cross-Country Evidence From a Local Perspective. Journal of Banking and Finance 31(6): 1693–1712.CrossRefGoogle Scholar
  14. Edelen, R., R. Evans, and G. Kadlec. 2013. Shedding Light on “Invisible” Costs: Trading Costs and Mutual Fund Performance. Financial Analysts Journal 69(1): 33–44.CrossRefGoogle Scholar
  15. European Fund and Asset Management Association. 2016. Worldwide Regulated Open-Ended Fund Assets and Flows. Trends in the Fourth Quarter of 2015. European Fund and Asset Management association (EFAMA), March 2016. https://www.efama.org. Accessed June 2016.
  16. Engle, R. 2002. Dynamic Conditional Correlation: A Simple Class of Multivariate GARCH Models. Journal of Business and Economic Statistics 20(3): 339–350.CrossRefGoogle Scholar
  17. Fan, J., J. Zhang, and K. Yu. 2012. Vast Portfolio Selection with Gross-Exposure Constraints. Journal of the American Statistical Association 107(498): 592–606.CrossRefGoogle Scholar
  18. Fastrich, B., S. Paterlini, and P. Winker. 2015. Constructing Optimal Sparse Portfolios Using Regularization Methods. Computational Management Science 12(3): 417–434.CrossRefGoogle Scholar
  19. Favre, L., and J.-A. Galeano. 2002. Mean-Modified Value-at-Risk Optimization with Hedge Funds. The Journal of Alternative Investments 5(2): 21–25.CrossRefGoogle Scholar
  20. Franke, J., W.K. Härdle, and C.M. Hafner. 2015. Statistics of Financial Markets: An Introduction, 4th ed. Berlin: Springer.Google Scholar
  21. Frankfurter, G.M., H.E. Phillips, and J.P. Seagle. 1971. Portfolio Selection: The Effects of Uncertain Means, Variances and Covariances. Journal of Financial and Quantitative Analysis 6: 1251–1262.CrossRefGoogle Scholar
  22. Ghalanos, A., E. Rossi, and G. Urga. 2015. Independent Factor Autoregressive Conditional Density Model. Econometric Reviews 34(5): 594–616.CrossRefGoogle Scholar
  23. Geczy, C. 2014. The New Diversification: Open Your Eyes to Alternatives. Journal of Portfolio Management. doi:10.3905/jpm.2014.40.5.146.Google Scholar
  24. Härdle, W.K., Nasekin, S., Lee, D.K.C. and K.F. Phoon. 2014. TEDAS—Tail Event Driven Asset Allocation. Berlin: Humboldt Universität zu Berlin. SFB 649 Discussion Paper 2014-032.Google Scholar
  25. Investment Company Institute. 2016. Investment Company Fact Book: 2016. Investment company institute (ICI), May 2016. https://www.icifactbook.org. Accessed June 2016.
  26. Jobson, J.D., B. Korkie, and V. Ratti. 1979. Improved Estimation for Markowitz Portfolios Using James–Stein Type Estimators. Proceedings of the American Statistical Association, Business and Economics Statistics 41: 279–284.Google Scholar
  27. Jobson, J.D., and B. Korkie. 1980. Estimation for Markowitz Efficient Portfolios. Journal of the American Statistical Association 75: 544–554.CrossRefGoogle Scholar
  28. Jorion, P. 1985. International Portfolio Diversification with Estimation Risk. Journal of Business 58(3): 259–278.CrossRefGoogle Scholar
  29. Kan, R., and G. Zhou. 2007. Optimal Portfolio Choice With Parameter Uncertainty. Journal of Financial and Quantitative Analysis 42(3): 621–656.CrossRefGoogle Scholar
  30. Kazemi, H. 2012. An Introduction to Risk Parity. Alternative Investment Analyst Review. Chartered Alternative Investment Analyst Association, April 2012. https://www.caia.org. Accessed Feb 2015.
  31. Koenker, R., and K.F. Hallock. 2001. Quantile Regression. The Journal of Economic Perspectives 15(4): 143–156.CrossRefGoogle Scholar
  32. Lee, D.K.C., F.P. Kok, and Y.W. Choon. 2006. Moments Analysis in Risk and Performance Measurement. The Journal of Wealth Management 9(1): 54–65.CrossRefGoogle Scholar
  33. Lee, E.R., N. Hohsuk, and U.P. Byeong. 2014. Model Selection via Bayesian Information Criterion for Quantile Regression Models. Journal of the American Statistical Association 109(505): 216–229.CrossRefGoogle Scholar
  34. Lehmann, B.N., and D.M. Modest. 1987. Mutual Fund Performance Evaluation: A Comparison of Benchmarks and Benchmark Comparisons. The Journal of Finance 42(2): 233–265.CrossRefGoogle Scholar
  35. Maillard, S., T. Roncalli, and J. Teiletche. 2010. The Properties of Equally Weighted Risk Contribution Portfolios. Journal of Portfolio Management 36(4): 60–70.CrossRefGoogle Scholar
  36. Matallin-Saez, J. 2007. Portfolio Performance: Factors or Benchmarks? Applied Financial Economics 17: 1167–78.CrossRefGoogle Scholar
  37. Markowitz, H. 1952. Portfolio Selection. The Journal of Finance 7(1): 77–91.Google Scholar
  38. McNamara, J.R. 1998. Portfolio Selection Using Stochastic Dominance Criteria. Decision Sciences 29(4): 785–801.CrossRefGoogle Scholar
  39. Nathan, A. (ed.) 2013. Bond Bubble Breakdown. Commodities and Strategy Research, 22 April. http://www.nber.org. Accessed Feb 2015.
  40. Reinganum, M.R. 1981. A New Empirical Perspective on the CAPM. The Journal of Financial and Quantitative Analysis 16(4): 439–462.CrossRefGoogle Scholar
  41. Schwarz, G.E. 1978. Estimating the Dimension of a Model. Annals of Statistics 6(2): 461–464.CrossRefGoogle Scholar
  42. Simaan, Y. 1997. Estimation Risk in Portfolio Selection: The Mean Variance Model Versus the Mean Absolute Deviation Model. Management Science 43(10): 1437–1446.CrossRefGoogle Scholar
  43. Swensen, D.F. 2009. Pioneering Portfolio Management: An Unconventional Approach to Institutional Investment, Fully Revised and Updated. New York: Free Press.Google Scholar
  44. Tibshirani, R. 1996. Regression Shrinkage and Selection via the Lasso. Journal of Royal Statistical Society 58(1): 267–288.Google Scholar
  45. Yen, Y., and T. Yen. 2014. Solving Norm Constrained Portfolio Optimization via Coordinate-Wise Descent Algorithms. Computational Statistics and Data Analysis 76: 737–759.CrossRefGoogle Scholar
  46. Zheng, Qi, C. Gallagher, and K.B. Kulasekera. 2013. Adaptive Penalized Quantile Regression for High-Dimensional Data. Journal of Statistical Planning and Inference 143(6): 1029–1038.CrossRefGoogle Scholar
  47. Zou, H. 2006. The Adaptive Lasso and Its Oracle Properties. Journal of Statistical Planning and Inference 101(476): 1418–1429.Google Scholar

Copyright information

© Macmillan Publishers Ltd 2017

Authors and Affiliations

  • Wolfgang Karl Härdle
    • 1
  • David Kuo Chuen Lee
    • 2
  • Sergey Nasekin
    • 3
  • Alla Petukhina
    • 1
  1. 1.C.A.S.E. - Center for Applied Statistics and EconomicsHumboldt-Universität zu BerlinBerlinGermany
  2. 2.School of Business Singapore University of Social Sciences (SUSS)SingaporeSingapore
  3. 3.Lancaster University Management School (LUMS) Lancaster UniversityLancasterUK

Personalised recommendations